Pedogenesis and Clay Mineralogy of a Climolithotoposequence in Jazmurian Watershed, Central Iran

Document Type : Original Research

Authors
1 1. Department of Soil Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, P. O. Box: 76169-14111, Kerman, Islamic Republic of Iran. 2. Department of Soil Science, Faculty of Agriculture, University of Jiroft, Jiroft, Islamic Republic of Iran.
2 Department of Soil Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, P. O. Box: 76169-14111, Kerman, Islamic Republic of Iran.
Abstract
Topography, parent material, and climate are critical factors influencing pedogenesis and clay mineralogy of soils. There is a paucity of data regarding the soils and sediments of the Jazmurian Watershed in south-central Iran. This study selected various landforms, including rock and mantled pediments, alluvial fans, piedmont plains, lowlands, and playa characterized by igneous and sedimentary parent materials and situated within aquic, xeric, and aridic soil moisture regimes, to investigate soil genesis and clay mineralogy in the region. The findings indicated that the most significant soil development occurred on rock and mantled pediments, as well as on older alluvial fan sediments, in contrast to the less developed soils found on younger alluvial fan deposits. The clay minerals included smectite, illite, chlorite, palygorskite, and kaolinite. The presence of palygorskite in the sedimentary soils was attributed to inheritance from the parent material, while in soils derived from igneous parent material, it was formed through pedogenic processes. Pedogenic features associated with calcium carbonate were observed in both aridic and xeric soil moisture regimes. The occurrence of clay pedogenic features in the arid regions of the watershed may suggest a historical paleoclimate with greater moisture availability. Conversely, lenticular shapes, interlocked plates, and gypsum infillings were exclusively noted in the arid regions and lower elevations of the watershed, reflecting the current arid climate.

Keywords


1.       Amit. R. and Yaalon, A. D. 1996. The Micromorphology of Gypsum and Halite in Reg Soils: The Negev Desert, Israel. Earth Surf. Proc. Landf., 21: 1127–1143.
2.       Aref, M.A. M. 2003. Classification and Depositional Environments of Quaternary Pedogenic Gypsum Crusts (Gypcrete) from East of the Fayum Depression, Egypt. Sed. Geol., 155(1): 87–108.
3.       Artieda, O., Herrero, J. and Drohan, P. J. 2006. Refinement of the Differential Water Loss Method for Gypsum Determination in Soils. Soil Sci. Soc. Am. J., 70: 1932–1935.
4.       Badia, D., Buendia-Garcia, L., Longares-Aladrén, L., Marti-Dalmau, C., Peña-Monné, J., González-Pérez, J. and Gómez-Garcia, D. 2020. Soil-Geomorphology Relationships Determine the Distribution of the Main Subalpine Grasslands in the Central Pyrenees (NE-Spain). Sci. Total Environ., 734: 139121.
5.       Banaie, M. H. 1998. Soil Moisture and Temperature Regimes Map of Iran. Soil and Water Research Institute, Iran.
6.       Bayat, O., Karimzadeh, H., Karimi, A., Karimian Eghbal, M. and Khademi, H. 2017. Paleoenvironment of Geomorphic Surfaces of an Alluvial Fan in the Eastern Isfahan, Iran, in the Light of Micromorphology and Clay Mineralogy. Arab. J. Geosci., 10(91): 1-11.
7.       Birkeland, P. W. 1999. Soils and Geomorphology. Oxford University Press, New York.
8.       Bower, C. A. and Hatcher, J. T. 1966. Simultaneous Determination of Surface Area and Cation Exchange Capacity. Soil Sci. Soc. Am. J., 30: 525–527.
9.       Durand, N., Monger, H. C. and Canti, M. G. 2010. Calcium Carbonate Features. In: “Interpretation of Micromorphological Features of Soils and Regoliths”, (Eds.): Stoops, G., Marcelino, V. and Mees, F. Elsevier, Amsterdam, Netherlands, PP. 149–182.
10.    Egli, M., Merkli, Ch., Sartori, G., Mirabella, A. and Plotze, M. 2008. Weathering, Mineralogical Evolution and Soil Organic Matter along a Holocene Soil Toposequence Developed on Carbonate-Rich Materials. Geomorphology, 97: 675–696.
11.    Elliott, P. E. and Dorhan, P. J. 2009. Clay Accumulation and Argillic-Horizon Development as Influenced by Aeolian vs. Local Parent Material on Quartzite and Limestone-Derived Alluvial Fans. Geoderma, 151: 98-108.
12.   Farpoor, M. H. and Irannejad, M., 2013. Soil Genesis and Clay Mineralogy on Aliabbas River Alluvial Fan, Kerman Province. Arab. J. Geosci., 6(3): 921–928.
13.    Farpoor, M. H., Eghbal, M. K. and Khademi, H. 2003. Genesis and Micromorphology of Saline and Gypsiferous Aridisols on Different Geomorphic Surfaces in Nough Area, Rafsanjan. J. Sci. Technol. Agric. Nat. Resour., 7: 71–93. (in Persian with English Abstract)
14.   Farpoor, M. H., Neyestani, M., Eghbal, M. K. and Esfandiarpour Borujeni, I. 2012. Soil–Geomorphology Relationships in Sirjan Playa, South-Central Iran. Geomorphology, 138(1): 223–230.
15.    Gee, G. W., Bauder, J. W., 1986. Particle size analysis. In: (Ed.): “Methods of Soil Analysis”, Klute, A. Agronomy Monograph, American Society of Agronomy/Soil Science Society of America, Madison, WI, 9: 383–411.
16.    Graham R. C. and O'Geen A. T. 2010. Soil Mineralogy Trends in California Landscapes. Geoderma, 154: 418–437.
17.    Jackson, M. L., 1975. Soil Chemical Analysis-Advanced Course. Department of Soil Science, College of Agriculture, University of Wisconsin, Madison, WI.
18.    Johns, W. D., Grim, R. E. and Bradly, W. F. 1954. Quantitative Estimation of Clay Minerals by Diffraction Methods. J. Sed. Petrol., 24: 242-251.
19.    Kemp, R. A., Tomas, P. S., Sayago, J. M., Debyshire, E., King, M. and Wagner, L. 2003. Micromorphology OSL Dating of the Basalt Part of the Loess-Paleosol Sequence at La Mesuda in Tucuman Province, Northwest Argentina. Quart. Int., 106–107: 111–117.
20.    Khademi, H. and Mermut, A. R. 1998. Source of Palygorskite in Gypsiferous Aridisols and Associated Sediments from Central Iran. Clay Miner., 33(4): 561–578.
21.   Khademi, H. and Mermut, A. R. 2003. Micromorphology and Classification of Argids and Associated Gypsiferous Aridisols from Central Iran. Catena, 54: 439–455.
22.   Khormali, F. and Abtahi, A., 2003. Origin and Distribution of Clay Minerals in Calcareous Arid and Semiarid Soils of Fars Province, Southern Iran. Clay Miner., 38(4): 511–527.
23.    Khormali, F., Abtahi, A., Mahmoodi, S. and Stoops, G., 2003. Argillic Horizon Development in Calcareous Soils of Arid and Semiarid Regions of Southern Iran. Catena 53(3): 273–301.
24.   Kittrick, J. A. and Hope, E. W. 1963. A Procedure for the Particle-Size Separation of Soils for X-Ray Diffraction Analysis. Soil Sci., 96(5): 319–325.
25.    Krinsley, D. B. 1970. A Geomorphological and Paleoclimatological Study of the Playas of Iran. Geological Survey, United States Department of Interior, Washington DC.
26.    Moazallahi, M. and Farpoor, M. H. 2012. Soil Genesis and Clay Mineralogy along the Xeric Aridic Climotoposequence, South central Iran. J. Agri. Sci. Technol., 14: 683–696.
27.   Moghbeli, M., Owliaie, H. R., Sanjari, S. and Adhami, E. 2019. Genetic Study of Soil-Landscape Relationship in Arid Region of Faryab, Kerman Province. J. Water Soil, 33(2): 333–347. (in Persian with English Abstract)
28.    Mohammadi, A. 2011. Sedimentology and Sedimentary Geochemistry of Jazmuriyan Playa. Arid Biom Sci. Res. J., 1(1): 68–78. (in Persian with English Abstract)
29.    Monafi, S. H. 2010. Mineralogical Evidence of Climate Change in Some Semiarid Soils of Southern Urmia, Iran. Soil Sci. Agrochem. Ecol., 4: 17-24.
30.    Namaki, L. 2003. Analysis of Makran Aeromagnetic Data. M.Sc. Thesis, Institute of Geophysics, University of Tehran, Iran, 88 PP. (in Persian with English Abstract)
31.    Nelson, D. W. and Sommers, L. E. 1982. Total Carbon, Organic Carbon and Organic Matter. In: “Methods of Soil Analysis”, (Eds.): Page, A. L., Miller, R. H. and Keeney, D. R. Part II, 2nd Edition, Agronomy Monogarph, American Society of Agronomy/Soil Science Society of America, Madison, WI, 9: 539–577.
32.    Nelson, R. E., 1982. Carbonate and Gypsum. In: “Methods of Soil Analysis”, (Eds.): Page, A. L., Miller, R. H. and Keeney, D. R. Part II, 2nd Edition, Agronomy Monogarph, American Society of Agronomy/Soil Science Society of America, Madison, WI, 9: 181–196.
33.    O'Geen, A. T., Hobson, W. A. Dahlgren, R. A. and Kelly, D. B. 2008. Evaluations of Soil Properties and Hydric Soil Indicators for Vernal Pool Catenas in California. Soil Sci. Soc. Am. J., 72: 727–740.
34.    Owliaie, H. R., Abtahi, A. and Heck, R. J. 2006. Pedogenesis and Clay Mineralogical Investigation of Soils Formed on Gypsiferous and Calcareous Materials on a Transect, Southwestern Iran. Geoderma, 134: 62–81.
35.    Owliaie, H. R., Adhami, E., Najafi Ghiri, M. and Shakeri, S., 2018. Pedological Investigation of a Litho-Toposequence in a Semi-Arid Region of Southwestern Iran. Euras. Soil Sci., 51(12): 1447–1461.
36.    Paquet, H. and Millot, C. 1972. Geochemical Evolution of Clay Minerals in the Weathered Products and Soils of Mediterranean Climates. Proceedings of the 9th International Clay Conference, Madrid, Spain, PP. 199–202.
37.    Phillips, J., Turkingtan, A. V. and Marine, D. A. 2008. Weathering and Vegetation Affection Early Stages of Soil Formation. Catena, 72: 21-28.
38.   Saez, A., Ingles, M., Cabrera, L. and Heras, A. 2003. Tectonic Paleoenvironmental Forcing of Clay-Mineral Assemblages in Non-Marine Setting: The Oligocene-Miocene Aspontes Basin (Spain). Sediment. Geol., 159(3-4): 305-324.
39.    Sanjari, S., Farpoor, M. H., Esfandiarpoor Boroujeni, I. and Karimian Eghbal, M. 2012. Micromorphology and Clay Mineralogy Comparison of Paleosols and Modern Soils in Jiroft Area. J. Water Soil Sci., 15(58): 173-185 (in Persian with English abstract).
40.    Sanjari, S., Farpoor, M. H., Karimian Eghbal, M. and Esfandiarpoor Boroujeni, I. 2011. Genesis, Micromorphology and Clay Mineralogy of Soils Located on Different Geomorphic Surfaces in Jiroft Area. J. Water Soil, 25(2): 411–425. (in Persian with English Abstract)
41.    Sarmast, M., Farpoor, M. H. and Esfandiarpour Boroujeni, I. 2017. Soil and Desert Varnish Development as Indicators of Landform Evolution in Central Iranian Deserts. Catena, 149: 98–109.
42.   Sarmast, M., Farpoora, M. H., Jafaria, A. and Esfandiarpour Borujeni, I. 2019. Tracing Environmental Changes and Paleoclimate Using the Micromorphology of Soils and Desert Varnish in Central Iran. Desert, 24(2): 331–353.
43.    Schoeneberger, P. J., Wysocki, D. A. and Benham, E. C. 2012. Field Book for Describing and Sampling Soils. Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE.
44.   Singer, A. 1989. Palygorskite and Sepiolite Group Minerals. In: “Soil Mineralogy with Environmental Applications”, (Eds.): J. B. Dixon and Schulze D. G. Soil Science Society of America, Madison, Wisconsin, USA, PP. 556-580.
45.    Singer, M. J. and Fine, P. 1989. Pedogenic Factors Affecting Magnetic Susceptibility of California Soils. Soil Sci. Soc. Am. J., 53: 1119-1127.
46.    Soil Survey Staff. 2022. Keys to Soil Taxonomy. 13th Edition. United States Department of Agriculture and Natural Resources Conservation Service, Washington, DC.
47.    Stoops, G. 2003. Guidelines for the Analysis and Description of Soil and Regolith Thin Sections. Soil Science Society of America, Madison, WI.
48.    Wilson, M. A., Shahid, S. A., Abdelfattah, M. A., Kelley, J. A. and Thomas, J. E. 2013. Anhydrite Formation on the Coastal Sabkha of Abu Dhabi, United Arab Emirates. In: “Developments in Soil Classification, Land Use Planning and Policy Implications: Innovative Thinking of Soil Inventory for Land Use Planning and Management of Land Resources, (Eds.): Shahid, S. A., Taha, F. K. and Abdelfattah, M. A. SBM Publishing, Springer, The Netherlands, PP. 175–201.
49.    Wilson, S. G., Lambert, J. -J., Nanzyo, M. and Dahlgren, R. A. 2017. Soil Genesis and Mineralogy across a Volcanic Lithosequence. Geoderma, 285: 301–312.
50.   Yousefifard, M., Ayoubi, S., Poch, R. M., Jalalian, A., Khademi, H. and Khormali, F. 2015. Clay Transformation and Pedogenic Calcite Formation on a Lithosequence of Igneous Rocks in Northwestern Iran. Catena, 133: 186–197.