Study on hemogram and the effect of thermal stress on hemocytes and development in Dacus ciliatus (Diptera: Tephritidae)

Document Type : Original Research

Authors
1 Shahrood University of Technology
2 National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat principal, 10090 Rabat
3 Delta Research and Extension Center, Mississippi State University, Stoneville, MS 38776.
Abstract
Various factors, such as temperature stress, dietary changes, and the entry of contaminants and infections into the hemolymph, are known to affect insect immune responses by altering hemocyte profiles. The research focused on the hemocyte profile, hemogram across all biological stages, and the morphological and frequency changes of hemocytes in third instar larvae exposed to temperature stress. Cucumber fruits infected with insect larvae were collected and brought to the laboratory, where third instar larvae were extracted from the fruit tissue. The hemolymph was then collected, and after staining with Giemsa solution, hemocytes were identified under a light microscope. The hemogram analysis included measurements of DHC, THC, blood volume, and AHC across all biological stages. In third instar larvae, plasmatocytes and granulocytes were the most abundant, comprising about 56% of the hemocyte population. In contrast, prohemocytes were most frequent in the first instar larvae, accounting for approximately 37%. THC was highest in third instar larvae, indicating a direct correlation between hemolymph volume and total hemocyte count. Temperature stress had a significant impact on hemocyte numbers. Heat stress, with temperatures up to 30 and 35 °C, led to a notable increase in total cell count, granulocytes, and plasmatocytes. Conversely, cold temperatures resulted in a decrease in prohemocytes, plasmatocytes, granulocytes, and the total cell count compared to the control group. Additionally, temperature stress induced hemocyte deformation, with plasmatocytes and granulocytes showing the most pronounced changes under heat stress, including torn cell walls and loss of cell contents at 35 C.

Keywords

Subjects


Abdallah, A.A., El-Saiedy, E.M.A., El-Fatih, M.M., and Shoula, M.E. 2012. Effect of some biological and biochemical control agents against certain squash pests. Arch. Phytopathol., 45 (1): 73-82.
Ajamhassani, M. and Mahmoodzadeh, M. 2020. Cellular defense responses of 5th instar larvae of the Apple Ermine Moth, Yponomeuta malinellus (Lepidoptera: Yponomeutidae) against starvation, thermal stresses and entomopathogenic bacteria Bacillus thuringiensis. J. Anim. Res., 4(2): 59–68. (In Persian with English summary).
Ajamhassani, M. 2021. Hemocyte changes of larvae of the beet moth, Scrobipalpa ocellatella (Lepidoptera: Gelechiidae) affected by thermal stress. J. Entomol. Soc. Iran., 41(1):101–103. (In Persian with English summary).
Ajamhassani, M., Ebrahimizadeh, Z., Abdos, F. and Ahangi rashti, B. 2023. Different pistachio cultivars impair hemocyte frequencies in diapausing and nondiapausing larvae of pistachio seed chalcid, Megastigmus pistaciae (Hymenoptera: Torymidae). J. Entomol. Soc. Iran., 43(4): 347-360.
Amaral, I.M.R., Neto, J.F.M., Pereira, G.B., Franco, M.B,. Beletti, M.E., Kerr, W.E., Bonetti, A.M., Ueira-Vieira, C. 2010. Circulating hemocytes from larvae of Melipona scutellaris (Hymenoptera, Apidae, Meliponini): Cell types and their role in phagocytosis. Micron. 41: 123-129.
Arghand, B. 1983. Introduction flies Dacus sp. and study it in the province Hormozgan. Journal of Plant Pests and Diseases., 51(1): 9-3. (in Persian).
Barzkar, M., Goldasteh, SH., Eslamizadeh, R. and Usefi, B. 2017. Study on the population dynamics and spatial distribution of the cucurbit Fly; Dacus ciliatus Loew (Dip., Tephritidae). J. Entomol. Res., 9(2): 131-142.
Black, J. L.; Clark, M. K.; Sword, G. A. 2022. Physiological and transcriptional immune responses of a non-model arthropod to infection with different entomopathogenic groups. PLoS ONE., 17: e0263620.
Boher, F., Trefault, N., Estay, S. E., Bozinovic, F., 2016. Ectotherms in variable thermal 521 landscapes: A physiological evaluation of the invasive potential of fruit flies species. Front. Physiol., 7: 302.
Browne, N., Surlis, C. and Kavanagh, K., 2014. Thermal and physical stresses induce a short-term immune priming effect in Galleria mellonella larvae. J. Insect Physiol., 63: 21-26.
Bruno, D., Montali, A., Gariboldi, M., Wronska, A., Kaczmarek, A., Mohamed, A., Tian, L., Casartelli, M. and Tettamanti, G. 2022. Morphofunctional characterization of hemocytes in black soldier fly larvae. Insect Sci., 1-21.
De Campos, M. R., Béarez, P., Amiens-Desneux, E., Ponti, L., Gutierrez, A. P., Biondi, A., Adiga, A. and Desneux, N. 2020. Thermal biology of Tuta absoluta: demographic parameters and facultative diapause. J Pest Sci., 94: 829–842.
Dyar, H. C., 1890. The number of molts of lepidopterous larvae. Psyche. 5: 420-422.
EPPO, 2018. EPPO Global Database (available online). https://gd.eppo.int [accessed on 23 May 2018] EPPO/CABI (1997) Quarantine Pests for Europe, 2nd edn. (Eds Smith IM, McNamara.
Foray, V., Desouhant, E. and Gibert, P. 2014. The impact of thermal fuctuations on reaction norms in specialist and generalist parasitic wasps. Funct. Ecol., 28: 411–423.
Gábor, E., Cinege, G., Csordás, G., Rusvai, M., Honti, V. and Kolics, B. 2020. Identification of reference markers for characterizing honey bee (Apis mellifera) hemocyte classes. DCI., 109: 103701.
Gaikwad, P., Gupta, A., Waghamare, N., Mukhopadhyaya, R. and Nath, B. B. 2024. Hemocytes of a tropical midge Chironomus ramosus (Diptera: Chironomidae). Int. J. Trop. Insect Sci., 44: 265-271.
Ghasemi, V., Moharramipour, S., and Jalali Sendi, J., 2013. Circulating hemocytes of Mediterranean flour moth, Ephestia kuehniella Zell (Lep: Pyralidae) and their response to thermal stress. ISJ., 10:128-140.
Go, M. S., Cho, Y., Park, K., Kim, M., Park, S., Park, J., 2022. Classification and characterization of immune haemocytes in the larvae of the Indian fritillary, Papilio hyperbius (Lepidopetra: Nymphalidae). Eur. J. Entomol. 119: 430-438.
Hassan, G. M., El Aassar, M. R., and Khorchid, A. M. 2023. Implement of Some Biocontrol Tactics as an Innovative Management Against Cucurbit Fly, Dacus ciliatus and Western Flower Thrips, Frankliniella occidentalis on Squash Crop. A J A S., 54 (2): 202-219.
Jones, J. C. 1962. Current concepts concerning insect hemocytes. Am. Zool., 2: 209-246.
Herren, P., Hesketh, H., Dunn, A. M. and Meyling, N. V. 2023. Heat stress has immediate and persistent effects on immunity and development of Tenebrio molitor. J. Insects Food Feed., 1-19.
Lee K. P., Simpson, S. J. and Wilson, K. 2008. Dietary protein‐quality influences melanization and immune function in an insect. Funct. Ecol., 22: 1052-1061.
Li, L. T., Wang, Y. Q., Ma, J. F., Liu, L., Hao, Y. T., Dong, C., Gan, Y. J., Dong, Z. P. and Wang, Q. Y. 2013. The efects of temperature on the development of the moth Athetis lepigone, and a prediction of feld occurrence. J. Insect Sci., 13: 103.
Lubawy, J. and Sticinska, M. 2020. Characterization of Gromphadorhina coquereliana hemolymph under cold stress. Sci. Rep., 10: 12076.
Mahmood, A., and Yousaf, M. 1985. Effect of some insecticides on the haemocytes of Gryllus bimaculatus. de Geer. Pak. J. Zool., 17: 71-84.
Mahmoud, A. A., 2016. Effect of temperature on the development and survival of immature stages of the peach fruit fly, Bactrocera zonata (Saunders) (Diptera: Tephritidae). Plant Protection Department, Faculty of Agriculture, South Valley University Qena, Egypt. African Journal of Agricultural Research. 11(36): 3375-3381.
Manjula, P., Lalitha, K. and Shivakumar, M. S., 2020. Diet composition has a differential effect on immune tolerance in insect larvae exposed to Mesorhabditis belari, Enterobacter hormaechei and its metabolites. Exp. Parasit. 208: 1-7.
Mason, A. P., Smilanich, A. M. and Singer, M. S., 2014. Reduced consumption of protein-rich foods follows immune challenge in a polyphagous caterpillar. J. Exp. Biol. 217: 2250-2260.
Mohammad, A.K.H. 2022. Biological and Control Study of the Cucurbit Fruit Fly, Dacus ciliatus (Leow) (Diptera: Tephritidae). Biochem. Cell. Arch. 22 (1) (Part II): 2923-2926.
tamiasva, R., Mbande, A., Nyamukondiwa, C. and Chidawanyika, F. 2023. Thermal adaptation in Lepidoptera under shifting environments: mechanisms, patterns, and consequences. Phytoparasitica., 51: 929-955.
Norrbom, A. L. and Uchoa, M. A. 2011. New species and records of Anastrepha (Diptera: Tephritidae) from Brazil. Zootaxa., 2835: 61-67.
Ouda, M. I., Mousa, E. A., M. and Fatina, b. 2022. Biological Study of Cucurbit Fruit Fly, Dacus ciliatus (Loew) on Constant Temperatures. Egypt. Acad. J. Biolog. Sci. 15(4):121-128
Pal, R. and Kumar, K. 2014. A comparative study of haemocytes in three cyclorrhaphous dipteran flies. Int. J. Trop. Insect Sci., 34: 207–216.
Pandey, J. P., Mishra, P. K., Kumar, D., Singh, B. M. K., and Prasad B. C. 2010. Effect of temperature on hemocytic immune responses of tropical tasar silkworm, Antheraea mylitta. RJI., 3: 169-177.
Paydar, M., Moeini-Naghadeh, N., Jalilian, F. and Zamani, A.A. 2020. Comparative field study of various attractants of the pumpkin fruit fly, Dacus ciliatus (Diptera: Tephritidae) in Kermanshah. Iran J Plant Prot Sci. 51(2): 171-179.
Pech, L. L., and Strand, M. R. 2000. Plasmatocytes from the moth Pseudoplusia includens induce apoptosis of granular cells. J Insect Physiol., 46: 1565–1573.
Pourali, Z., and Ajamhassani, M. 2018. The effect of thermal stresses on the immune system of the potato tuber moth, Phthorimaea operculella (Lepidoptera: Gelechiidae). J. Entomol. Soc. Iran., 37: 515-525. (In Persian with English Summary).
Rowley, A. F., and Ratclife, N. A. A. 1978. histological study of wound healing and hemocyte function in the wax-moth Galleria mellonella. J. Morphol., 157: 181–199.
Silva, J. E. B., Boleli, I. C. and Simoes, Z. L. P. 2002. Hemocyte types and total and differential counts in unparasitized and parasitized Anastrepha obliqua (Diptera, Tephritidae) larvae. Braz. J. Biol., 62(4A): 689-699.
Siva-Jothy, M., and Thompson, J. 2002. Short-term nutrient deprivation affects immune function. Physiol. Entomol., 27(3): 206-212.
Shapiro, M. 1979. Changes in hemocyte populations. In: Gupta A.P. (ed.), Insect hemocytes, Cambridge University Press, Cambridge, pp. 475-524.
Strand, M. R. 2008. The insect cellular immune response. Insect Sci., 15: 1- 14
Terra, W. R., Bianchi, A. G., and Lara, F. J. S. 1975. Physical properties and chemical composition of the haemolymph of Rhynchosciara americana (Diptera) larvae. CBP., 47: 117-129.
Urbanski, A., Czarniewska, E., Baraniak, E. and Rosinski, G. 2017. Impact of cold on the immune system of burying beetle, Nicrophorus vespilloides (Coleoptera: Silphidae). Insect Sci., 24: 443-454.
Valadez-Lira, J. A., Gonzalez, J. M., Damas, G., Meja, G., Oppert, B., Padilla, C., and Guerra, P. 2011. Comparative evaluation of phenoloxidase activity in different larval stages of four lepidopteran after exposure to Bacillus thuringiensis. J. Insect Sci., 12(80): 1-11.
Valizadeh, B., Sendi, J., Khosravi, R. and Salehi, R. 2017. Establishment and characterizations of a new cell line from larval hemocytes of rose sawfly Arge ochropus (Hymenoptera: Argidae). J. Entomol. Soc. Iran., 38(2): 173186. (In Persian with English Summary).
Vayssières, J. F., Carel, Y., Coubes, M. and Duyck, P. F. 2008. Development of immature stages and comparative demography of two cucurbit-attacking fruit flies in Re:union: Island: Bactrocera cucurbitae and Dacus ciliatus (Diptera: Tephritidae). Environ. Entomol. 37: 307-314.
Vogel, M., Shah, P. N., Voulgari-Kokota, A., Maistrou, S., Aartsma, Y., Beukeboom, L.W., Salles, J. F., Van Loon, J. J. A., Dicke, M. and Wertheim, B., 2022. Health of the black soldier fly and house fly under mass-rearing conditions: innate immunity and the role of the microbiome. J. Insects Food Feed., 8: 857-878.
Yamashita, M., and Iwabuchi, K. 2001. Bombix mori prohemocytes division and differentiation in individual microcultures. J. Insect Physiol., 47: 325- 331.
Yeager, J. F. 1945. The blood picture of the Southern armyworm (Prodenia eridamin). J. Agric. Res., 71: 1–40.
Zheng, J., Cheng, X., Hofmann, A. A., Zhang, B. O., and Ma, C. S. 2017. Are adult life history traits in oriental fruit moth afected by a mild pupal heat stress? J. Insect Physiol., 102: 36–41.
Zhu, Q., He, Y., Yao, J., Liu, Y., Tao, L. and Huang, Q. 2012. Effects of sublethal concentrations of the chitin synthesis inhibitor, hexaflumuron, on the development and hemolymph physiology of the cutworm, Spodoptera litura. J. Insect Sci., 12(27): 1-13.

Articles in Press, Accepted Manuscript
Available Online from 01 January 2024