Study on Hemogram and the Effect of Thermal Stress on Hemocytes and Development in Dacus ciliatus (Diptera: Tephritidae)

Document Type : Original Research

Authors
1 Department of Plant Protection, Faculty of Agriculture, Shahrood University of Techonology, Shahrood, Islamic Republic of Iran.
2 National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat principal, 10090 Rabat, Morocco.
3 Delta Research and Extension Center, Mississippi State University, Stoneville, MS 38776. USA.
Abstract
This study investigated the hemocyte profile, hemogram across all biological stages, and the morphological and frequency changes of hemocytes in the third instar larvae exposed to temperature stress. Cucumber fruits infected with insect larvae were collected and the third instar larvae were extracted from the fruit tissue. The hemolymph was then collected and, after staining with Giemsa solution, were identified under a light microscope. The hemogram analysis included DHC, THC, and blood volume across all biological stages. In the third instar larvae, plasmatocytes and granulocytes were the most abundant, comprising about 56% of the hemocyte population. In contrast, prohemocytes were most frequent in the first instar larvae, accounting for approximately 37%. THC was highest in the larvae, indicating a direct correlation between hemolymph volume and total hemocyte count. Temperature stress had a significant impact on hemocyte numbers. Heat stress, with temperatures up to 30 and 35°C, led to a notable increase in total cell count, granulocytes, and plasmatocytes. Conversely, cold temperatures resulted in a decrease in prohemocytes, plasmatocytes, granulocytes, and the total cell count compared to the control. Additionally, temperature stress induced hemocyte deformation, with plasmatocytes and granulocytes showing the most pronounced changes, including torn cell walls and loss of cell contents at 35C. Cold stress had a greater effect on the shrinkage of prohemocytes than on the other cell types. Temperature stress also significantly affected the developmental characteristics of the fruit fly. Heat stress reduced the pupation length and emergence rates, while cold stress more prominently impacted birth rates. This study provides a foundation for further research into the physiological defense mechanisms of this pest.

Keywords

Subjects


1.     Abdallah, A.A., El-Saiedy, E.M.A., El-Fatih, M.M. and Shoula, M.E. 2012. Effect of Some Biological and Biochemical Control Agents against Certain Squash Pests. Arch. Phytopathol., 45 (1): 73-82.
2.     Ajamhassani, M. 2021. Hemocyte Changes of Larvae of the Beet Moth, Scrobipalpa ocellatella (Lepidoptera: Gelechiidae) Affected by Thermal Stress. J. Entomol. Soc. Iran., 41(1):101–103. (In Persian with English Summary)
3.     Ajamhassani, M. and Mahmoodzadeh, M. 2020. Cellular Defense Responses of 5th Instar Larvae of the Apple Ermine Moth, Yponomeuta malinellus (Lepidoptera: Yponomeutidae) against Starvation, Thermal Stresses and Entomopathogenic Bacteria Bacillus thuringiensis. J. Anim. Res., 4(2): 59–68. (In Persian with English Summary)
4.     Ajamhassani, M., Ebrahimizadeh, Z., Abdos, F. and Ahangi Rashti, B. 2023. Different Pistachio Cultivars Impair Hemocyte Frequencies in Diapausing and Non-diapausing Larvae of Pistachio Seed Chalcid, Megastigmus pistaciae (Hymenoptera: Torymidae). J. Entomol. Soc. Iran., 43(4): 347-360.
5.     Amaral, I.M.R., Neto, J.F.M., Pereira, G.B., Franco, M.B., Beletti, M.E., Kerr, W.E., Bonetti, A.M. and Ueira-Vieira, C. 2010. Circulating Hemocytes from Larvae of Melipona scutellaris (Hymenoptera, Apidae, Meliponini): Cell Types and Their Role in Phagocytosis. Micron. 41: 123-129.
6.     Arghand, B. 1983. Introduction Flies Dacus sp. and Study it in the Province Hormozgan. J. Plant Pest. Dis., 51(1): 9-3. (in Persian)
7.     Barzkar, M., Goldasteh, SH., Eslamizadeh, R. and Usefi, B. 2017. Study on the Population Dynamics and Spatial Distribution of the Cucurbit Fly; Dacus ciliatus Loew (Dip., Tephritidae). J. Entomol. Res., 9(2): 131-142.
8.     Black, J. L.; Clark, M. K. and Sword, G. A. 2022. Physiological and Transcriptional Immune Responses of a Non-Model Arthropod to Infection with Different Entomopathogenic Groups. PLoS ONE., 17: e0263620.
9.     Boher, F., Trefault, N., Estay, S. E. and Bozinovic, F. 2016. Ectotherms in Variable Thermal 521 Landscapes: A Physiological Evaluation of the Invasive Potential of Fruit Flies Species. Front. Physiol., 7: 302.
10. Browne, N., Surlis, C. and Kavanagh, K. 2014. Thermal and Physical Stresses Induce a Short-Term Immune Priming Effect in Galleria mellonella Larvae. J. Insect Physiol., 63: 21-26.
11. Bruno, D., Montali, A., Gariboldi, M., Wronska, A., Kaczmarek, A., Mohamed, A., Tian, L., Casartelli, M. and Tettamanti, G. 2022. Morphofunctional Characterization of Hemocytes in Black Soldier Fly Larvae. Insect Sci., 1-21.
12. De Campos, M. R., Béarez, P., Amiens-Desneux, E., Ponti, L., Gutierrez, A. P., Biondi, A., Adiga, A. and Desneux, N. 2021. Thermal Biology of Tuta absoluta: Demographic Parameters and Facultative Diapause. J. Pest Sci., 94: 829–842.
13. Duarte, J. P., Silva, C. E., Ribeiro, P. B., and Carcamo, M. C. 2020. Do Dietary Stresses Affect the Immune System of Periplaneta americana (Blattaria: Blattidae)? Braz. J. Biol., 80: 73–80.
14. Dyar, H. C. 1890. The Number of Molts of Lepidopterous Larvae. Psyche. 5: 420-422.
15. Ebrahimi, M., and Ajamhassani, M. 2020. Investigating the Effect of Starvation and Various Nutritional Types on the Hemocytic Profile and Phenoloxidase Activity in the Indian Meal Moth Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). ISJ, 17: 175–185.
16. Foray, V., Desouhant, E. and Gibert, P. 2014. The Impact of Thermal Fuctuations on Reaction Norms in Specialist and Generalist Parasitic Wasps. Funct. Ecol., 28: 411–423.
17. Gábor, E., Cinege, G., Csordás, G., Rusvai, M., Honti, V. and Kolics, B. 2020. Identification of Reference Markers for Characterizing Honey Bee (Apis mellifera) Hemocyte Classes. Dev. Comp. Immunol. (DCI), 109: 1-5.
18. Gaikwad, P., Gupta, A., Waghamare, N., Mukhopadhyaya, R. and Nath, B. B. 2024. Hemocytes of a Tropical Midge Chironomus ramosus (Diptera: Chironomidae). Int. J. Trop. Insect Sci., 44: 265-271.
19. Ghasemi, V., Moharramipour, S., and Jalali Sendi, J. 2013. Circulating Hemocytes of Mediterranean Flour Moth, Ephestia kuehniella Zell (Lep: Pyralidae) and Their Response to Thermal Stress. Invertebr. Surviv. J. (ISJ), 10:128-140.
20. Go, M. S., Cho, Y., Park, K., Kim, M., Park, S. and Park, J. 2022. Classification and Characterization of Immune Haemocytes in the Larvae of the Indian Fritillary, Papilio hyperbius (Lepidopetra: Nymphalidae). Eur. J. Entomol., 119: 430-438.
21. Gupta, A. P., 1985. Cellular Elements in the Hemolymph. Comp. Biochem. Physiol. Pharmacol., 3: 401-451.
22. Hassan, G. M., El Aassar, M. R. and Khorchid, A. M. 2023. Implement of Some Biocontrol Tactics as an Innovative Management against Cucurbit Fly, Dacus ciliatus and Western Flower Thrips, Frankliniella occidentalis on Squash Crop. Assiut J. Agri. Sci. (AJAS), 54(2): 202-219.
23. Herren, P., Hesketh, H., Dunn, A. M. and Meyling, N. V. 2023. Heat Stress Has Immediate and Persistent Effects on Immunity and Development of Tenebrio molitor. J. Insects Food Feed., 10(5): 835-853.
24. Jiang, M., Zhang, X., Fezzaa, K., E. Reiter, K., Kramer-Lehnert, V., Davis, B., Wei, Q., and Lehnert, M. 2023. Adaptations for Gas Exchange Enabled the Elongation of Lepidopteran Proboscises. Curr. Biol., 33: 2888-2896.
25. Jones, J. C. 1962. Current Concepts Concerning Insect Hemocytes. Am. Zool., 2: 209-246.
26. Kanost, M. R., Jiang, H., Yu, and X. Q. 2004. Innate Immune Responses of a Lepidopteran Insect, Manduca sexta. Immunol. Rev., 198:97–105.
27. Lavine, M. D., and Strand, M. R. 2002. Insect Hemocytes and Their Role in Immunity. Insect Biochem Mol Biol., 32: 1295–1309.
28. Lee K. P., Simpson, S. J. and Wilson, K. 2008. Dietary Protein‐Quality Influences Melanization and Immune Function in an Insect. Funct. Ecol., 22: 1052-1061.
29. Li, L. T., Wang, Y. Q., Ma, J. F., Liu, L., Hao, Y. T., Dong, C., Gan, Y. J., Dong, Z. P. and Wang, Q. Y. 2013. The Effects of Temperature on the Development of the Moth Athetis lepigone, and a Prediction of Field Occurrence. J. Insect Sci., 13: 1-13.
30. Lubawy, J. and Sticinska, M. 2020. Characterization of Gromphadorhina coquereliana Hemolymph under Cold Stress. Sci. Rep., 10: 12076.
31. Mahmood, A., and Yousaf, M. 1985. Effect of Some Insecticides on the Haemocytes of Gryllus bimaculatus. de Geer. Pak. J. Zool., 17: 71-84.
32. Mahmoud, A. A. 2016. Effect of Temperature on the Development and Survival of Immature Stages of the Peach Fruit Fly, Bactrocera zonata (Saunders) (Diptera: Tephritidae). Afr. J. Agric. Res., 11(36): 3375-3381.
33. Manjula, P., Lalitha, K. and Shivakumar, M. S. 2020. Diet Composition Has a Differential Effect on Immune Tolerance in Insect Larvae Exposed to Mesorhabditis belari, Enterobacter hormaechei and Its Metabolites. Exp. Parasit., 208: 1-7.
34. Mason, A. P., Smilanich, A. M. and Singer, M. S. 2014. Reduced Consumption of Protein-Rich Foods Follows Immune Challenge in a Polyphagous Caterpillar. J. Exp. Biol., 217: 2250-2260.
35. Mohammad, A. K. H. 2022. Biological and Control Study of the Cucurbit Fruit Fly, Dacus ciliatus (Leow) (Diptera: Tephritidae). Biochem. Cell. Arch., 22(1): 2923-2926.
36. Mutamisva, R., Mbande, A., Nyamukondiwa, C. and Chidawanyika, F. 2023. Thermal Adaptation in Lepidoptera under Shifting Environments: Mechanisms, Patterns, and Consequences. Phytoparasitica, 51: 929-955.
37. Norrbom, A. L. and Uchoa, M. A. 2011. New Species and Records of Anastrepha (Diptera: Tephritidae) from Brazil. Zootaxa, 2835: 61-67.
38. Ouda, M. I., Mousa, E. A. M. and Fatina, B. 2022. Biological Study of Cucurbit Fruit Fly, Dacus ciliatus (Loew) on Constant Temperatures. Egypt. Acad. J. Biol. Sci., A Entomol., 15(4):121-128
39. Pal, R. and Kumar, K. 2014. A Comparative Study of Haemocytes in Three Cyclorrhaphous Dipteran Flies. Int. J. Trop. Insect Sci., 34: 207–216.
40. Pandey, J. P., Mishra, P. K., Kumar, D., Singh, B. M. K. and Prasad B. C. 2010. Effect of Temperature on Hemocytic Immune Responses of Tropical Tasar Silkworm, Antheraea mylitta D. Res. J. Immunol. (RJI), 3: 169-177.
41. Paydar, M., Moeini-Naghadeh, N., Jalilian, F. and Zamani, A. A. 2020. Comparative Field Study of Various Attractants of the Pumpkin Fruit Fly, Dacus ciliatus (Diptera: Tephritidae) in Kermanshah. Iran. J. Plant Prot. Sci., 51(2): 171-179.
42. Pech, L. L. and Strand, M. R. 2000. Plasmatocytes from the Moth Pseudoplusia includens Induce Apoptosis of Granular Cells. J. Insect Physiol., 46: 1565–1573.
43. Pourali, Z. and Ajamhassani, M. 2018. The Effect of Thermal Stresses on the Immune System of the Potato Tuber Moth, Phthorimaea operculella (Lepidoptera: Gelechiidae). J. Entomol. Soc. Iran, 37: 515-525. (In Persian with English Summary)
44. Rowley, A. F. and Ratclife, N. A. A. 1978. Histological Study of Wound Healing and Hemocyte Function in the Wax-Moth Galleria mellonella. J. Morphol., 157: 181–199.
45. Salcedo, M. K., Jun, B. H., Socha, J. J., Pierce, N. E., Valchos, P. P., and Combes, S. A. 2023. Complex Hemolymph Circulation Patterns in Grasshopper Wings. Commun. Biol. 6:313. 1-12.
46. Shapiro, M. 1979. Changes in Hemocyte Populations. In: “Insect Hemocytes”, (Ed.): Gupta A. P. Cambridge University Press, Cambridge, PP. 475-524.
47. Silva, J. E. B., Boleli, I. C. and Simoes, Z. L. P. 2002. Hemocyte Types and Total and Differential Counts in Unparasitized and Parasitized Anastrepha obliqua (Diptera, Tephritidae) Larvae. Braz. J. Biol., 62(4A): 689-699.
48. Siva-Jothy, M. and Thompson, J. 2002. Short-Term Nutrient Deprivation Affects Immune Function. Physiol. Entomol., 27(3): 206-212.
49. Strand, M. R. 2008. The Insect Cellular Immune Response. Insect Sci., 15: 1- 14
50. Terra, W. R., Bianchi, A. G., and Lara, F. J. S. 1975. Physical properties and chemical composition of the haemolymph of Rhynchosciara americana (Diptera) larvae. CBP., 47: 117-129.
51. Urbanski, A., Czarniewska, E., Baraniak, E. and Rosinski, G. 2017. Impact of Cold on the Immune System of Burying Beetle, Nicrophorus vespilloides (Coleoptera: Silphidae). Insect Sci., 24: 443-454.
52. Valadez-Lira, J. A., Gonzalez, J. M., Damas, G., Meja, G., Oppert, B., Padilla, C. and Guerra, P. 2011. Comparative Evaluation of Phenoloxidase Activity in Different Larval Stages of Four Lepidopteran after Exposure to Bacillus thuringiensis. J. Insect Sci., 12(80): 1-11.
53. Valizadeh, B., Sendi, J., Khosravi, R. and Salehi, R. 2017. Establishment and Characterizations of a New Cell Line from Larval Hemocytes of Rose Sawfly Arge ochropus (Hymenoptera: Argidae). J. Entomol. Soc. Iran, 38(2): 173-186. (In Persian with English Summary)
54. Vayssières, J. F., Carel, Y., Coubes, M. and Duyck, P. F. 2008. Development of Immature Stages and Comparative Demography of Two Cucurbit-Attacking Fruit Flies in Reunion Island: Bactrocera cucurbitae and Dacus ciliatus (Diptera: Tephritidae). Environ. Entomol., 37: 307-314.
55. Vogel, M., Shah, P. N., Voulgari-Kokota, A., Maistrou, S., Aartsma, Y., Beukeboom, L.W., Salles, J. F., Van Loon, J. J. A., Dicke, M. and Wertheim, B. 2022. Health of the Black Soldier Fly and House Fly under Mass-Rearing Conditions: Innate Immunity and the Role of the Microbiome. J. Insects Food Feed, 8: 857-878.
56. Washburn, J. O., Haas-Stapleton, E. J., Tan, F. F., Beckage, N. E., and Volkman, L. E. 2000. Co-infection of Manduca sexta larvae with polydnavirus from Cotesia congregata Increases Susceptibility to Fatal Infection by Autographa californica nucleopolyhedrovirus. J. Insect Physiol., 46(2): 179-190.
57. Yamashita, M. and Iwabuchi, K. 2001. Bombix mori Prohemocytes Division and Differentiation in Individual Microcultures. J. Insect Physiol., 47: 325- 331.
58. Yeager, J. F. 1945. The Blood Picture of the Southern Armyworm (Prodenia eridamin). J. Agric. Res., 71: 1–40.
59. Zheng, J., Cheng, X., Hofmann, A. A., Zhang, B. O. and Ma, C. S. 2017. Are Adult Life History Traits in Oriental Fruit Moth Affected by a Mild Pupal Heat Stress? J. Insect Physiol., 102: 36–41.
60. Zhu, Q., He, Y., Yao, J., Liu, Y., Tao, L. and Huang, Q. 2012. Effects of Sublethal Concentrations of the Chitin Synthesis Inhibitor, hexaflumuron, on the Development and Hemolymph Physiology of the Cutworm, Spodoptera litura. J. Insect Sci., 12(27): 1-13.