Investigating Agricultural Ecosystem Functions and Services in Northern Iran

Document Type : Original Research

Authors
1 Department of Forest Science and Engineering, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Islamic Republic of Iran.
2 Department of Irrigation and Drainage, Faculty of Agricultural Engineering, Sari University of Agricultural Sciences and Natural Resources, Islamic Republic of Iran.
Abstract
Agricultural ecosystem provides various functions and services for humans. Therefore, investigating their role and importance in agricultural land programming and management is one of the research goals. In this research, we used Common International Classification of Ecosystem Services (CICES) for identification of the Agricultural Ecosystem Functions and Services (AEFS). Also, Multi-Criteria Decision-Making (MCDM) models were used for weighting and prioritizing of the AEFS like Stepwise Weight Assessment Ratio Analysis (SWARA) for calculating their weight, and Simple Additive Weighting (SAW), Additive Ratio Assessment (ARAS), and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) for prioritizing them. The research data was extracted using field survey, random sampling, and completing the Delphi questionnaire of 40 agricultural experts in the north of Iran. Also, the R2 coefficient was used to compare the AEFS prioritization models. The results of SWARA technique showed that provisioning, regulation, and cultural functions with weights of 0.0298, 0.0286 and 0.0250 had the highest weight, respectively. Also, the results indicated that the SAW model with the R2= 0.90 was chosen as the appropriate prioritization model. Provisioning, regulation, and cultural functions with marginal weights of 0.6319, 0.5448, and 0.5092 were ranked the first to third priority, respectively. Also, food supply, employment, genetic material supply, and educational and research services were important positive services of the agricultural ecosystem compared to the other services. It is suggested that more appropriate programming and more research be done by relevant organizations for the sustainable management of agricultural ecosystems in northern Iran.

Keywords

Subjects


1.       Majeed, R. A. and Breesam, H. K. 2021. Application of SWARA Technique to Find Criteria Weights for Selecting Landfill Site in Baghdad Governorate. IOP Conf. Ser.: Mater. Sci. Eng., 1090(1): 012045.
2.       Altieri, M. A. 2018. Agroecology: The Science of Sustainable Agriculture. 2nd Edition, Westview Press, Boulder, CO, USA, (October 13, 1995).
3.       Ben Amor, W. D., Martinez Lopez, L. and Frikha, H. M. 2022. A Multigranular Linguistic Additive Ratio Assessment Model in Group Decision Making. World Academy of Science, Engineering and Technology. Int. J. Comput. Sci. Eng., 16(8): 357-362.
4.       Assandri, G., Bogliani, G., Pedrini, P. and Brambilla, M. 2018. Beautiful Agricultural Landscapes Promote Cultural Ecosystem Services and Biodiversity Conservation. Agriculture, 256: 200-210.
5.       Ayan, B., Abacıoğlu, S. and Basilio, M. P. A. 2023. Comprehensive Review of the Novel Weighting Methods for Multi-Criteria Decision-Making. Information, 14(5): 1-28.
6.       Azaiez, N., Alleoua, A., Baazaoui, N. and Qhtani, N. 2020. Assessment of Soil Loss in the Mirabah Basin: An Overview of the Potential of Agricultural Terraces as Ancestral Practices (Saudi Arabia). Open J. Soil Sci., 10: 159–180.
7.       Bishop, J. T. 1999. Valuing Forests: A Review of Method and Application in Developing Countries. International Institute for Environment and Development (IIED), WC1 ODD, London, UK, PP. 53-67.
8.       Chen, T. –C. and Yu, S. –Y. 2022. Study on the Risk Level of Food Production Enterprise Based on TOPSIS Method. Food Sci. Technol. (Campinas), 42: 1-6
9.       Czúcz, B., I., Arany, M., Potschin-Young, K., Bereczki, M., Kertész, M. and Haines-Young, R. 2018. Where Concepts Meet the Real World: A Systematic Review of Ecosystem Service Indicators and Their Classification Using CICES. Ecosyst. Serv., 29: 145-157.
10.    CICES., 2018. Common International Classification of Ecosystem Services (CICES). https://cices.eu/.
11.    Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, Sh., O'Neill, R., Paruelo J., Raskin R., Sutton P. and Belt M., 1998. The Value of the World's Ecosystem Services and Natural Capital. Ecol. Econ., 25: 67-72.
12.    De Groot, R. S., Alkemade, R., Braat, L., Hein, L. and Willemen, L., 2010. Challenges in Integrating the Concept of Ecosystem Services and Values in Landscape Planning, Management and Decision Making. Ecol. Complex., 7: 260–272.
13.    De Groot, R., Brander, L. and Ploeg, S., 2012. Estimates of the Value of Ecosystems and Their Services in Monetary Units.  Ecosyst. Serv., 1: 50–61.                  
14.    Debnath, B., Baria, M., Haqa, M., Pachecob, J. and Khan. M., 2023. An Integrated Stepwise Weight Assessment Ratio Analysis and Weighted Aggregated Sum Product Assessment Framework for Sustainable Supplier Selection in the Healthcare Supply Chains. Supply Chain Analytics, 1: 1-11
15.    Dick, J., Turkelboom, F. and Woods, H., Iniesta-Arandia, I., Primmer, E., Saarela, S. R., Bezák, P., Mederly, P., Leone, M., Verheyden, W., Kelemen, E., Hauck, J., Andrews, C., Antunes, P., Aszalós, R., Baró, F., Barton, D. N., Berry, P., Bugter, R., Carvalho, L., Czúcz, B., Dunford, R., Garcia Blanco, G., Geamănă, N., Giucă, R., Grizzetti, B., Izakovičová, Z.,  Kertész, M., Kopperoinen, L., Langemeyer, J., Montenegro Lapola, D., Liquete, C., Luque, S., Martínez Pastur, G., Martin-Lopez, B., Mukhopadhyay, R., Niemela, J., Odee, D., Luis Peri, P., Pinho, P., Patrício-Roberto, G. B., Preda, E., Priess, J., Röckmann, C., Santos, R., Silaghi, D., Smith, R., Vădineanu, A., van der Wal, J. T., Arany, I., Badea, O., Bela, G., Boros, E., Bucur, M., Blumentrath, S., Calvache, M., Carmen, E., Clemente, P., Fernandes, J., Ferraz, D., Fongar, C., García-Llorente, M., Gómez-Baggethun, E., Gundersen, V., Haavardsholm, O., Kalóczkai, Á., Khalalwe, T., Kiss, G., Köhler, B., Lazányi, O., Lellei-Kovács, E., Lichungu, R., Lindhjem, H., Magare, C., Mustajoki, J., Ndege, C., Nowell, M., Girona, S. N., Ochieng, J., Often, A., Palomo, I., Pataki, G., Reinvang, R., Rusch, G., Saarikoski, H., Smith, A., Massoni, E. S., Stange, E., Traaholt, N. V., Vári, Á., Verweij, P., Vikström, S., Yli-Pelkonen, V. and Zulian, G. 2018. Stakeholders’ Perspectives on the Operationalisation of the Ecosystem Service Concept: Results from 27 Case Studies. Ecosyst. Serv., 29(Part C): 552–565.
16.    Dumont, B., Ryschawy, J., Duru, M., Benoit, M., Chatellier V., Delaby L., Donnars, C., Dupraz, P., Lemauviel-Lavenant, S. Méda B., Vollet D. and Sabatier, R. 2019. Associations among Goods, Impacts and Ecosystem Services Provided by Livestock Farming. Animal, 13(8): \1773-1784.
17.    EEA. 2016. Climate Change, Impacts and Vulnerability in Europe 2016. European Environment Agency.
18.    FAO. 2018. Incentives for Ecosystem Services: Supporting the Transition to Sustainable Food Systems. Food and Agriculture Organization, PP. 1-6.
19.    Fan, J., Han, D. and Wu, M. 2023. Picture Fuzzy Additive Ratio Assessment Method (ARAS) and VIseKriterijumska Optimizes I Kompromisno Resenje (VIKOR) Method for Multi-Attribute Decision Problem and Their Application. Complex. Intell. Syst., 9: 5345–5357.
20.    Haines-Young, R. and Potschin, M. 2013. Common International Classification of Ecosystem Services (CICES), Version 4.3. Report to the European Environment Agency. (download: www.cices.eu)
21.    Heinze, A., Bongers, F., Ramírez Marcial, N., García Barrios, L. E. and Kuyper T. W. 2022. Farm Diversity and Fine Scales Matter in the Assessment of Ecosystem Services and Land Use Scenarios. Agric. Syst., 196: 1-15.
22.    Hosseini, S., Amirnejad, H. and Azadi, H. 2025. Impacts of Hyrcanian Forest Ecosystem Loss: The Case of Northern Iran. Environ. Dev. Sustain., 27: 14397–14418.
23.    Hosseini, S., Oladi, J. and Amirnejad, H. 2021. The Evaluation of Environmental, Economic and Social Services of National Parks. Environ. Sci. Dev., 23: 9052-9075.
24.    Jaukovic Jocic, K., Jocic, G., Karabasevic, D., Popovic, G., Stanujkic, D., Zavadskas, E. K. and Thanh Nguyen, P. 2020. A Novel Integrated PIPRECIA‐Interval‐Valued Triangular Fuzzy ARAS Model: E‐Learning Course Selection. Symmetry (Basel), 12(6): 1-14.
25.    Jia, Y., Liu, Y. and Zhang, S. 2021. Evaluation of Agricultural Ecosystem Service Value in Arid and Semiarid Regions of Northwest China Based on the Equivalent Factor Method. Environ. Process., 8: 713–727.
26.    MEA (Millennium Ecosystem Assessment). 2005. Ecosystems and Human Well-Being: Synthesis. Island Press, World Resources Institute, Washington DC, 155 PP.
27.    Mengual-Andrés, S., Roig-Vila, R. and Mira, J. B. 2016. Delphi Study for the Design and Validation of a Questionnaire about Digital Competences in Higher Education. Int. J. Educ. Technol. High. Educ., 13(12): 1-12.
28.    Prayogo, M. A., Suseno, J. E., Nugraheni, D. M. K., 2019. Selecting Palm Oil Cultivation Land Using ARAS Method. In International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), PP. 358‐362.
29.    Rabbinge, R. and Bindraban P. S. 2012. Making More Food Available: Promoting Sustainable Agricultural Production. J. Integr. Agric., 11: 1–8.
30.    Ramón-Canul, L., Margarito-Carrizal, D., Limón-Rivera R., Morales-Carrrera, U. A., Rodríguez-Buenfil, I. M., Ramírez-Sucre, M. O., Cabal-Prieto, A., Herrera-Corredor, J A. and de Jesús Ramírez-Rivera, E. 2021. Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) Method for the Generation of External Preference Mapping Using Rapid Sonometric Techniques.  J. Sci. Food Agric., 101(8): 3298-3307.
31.    Schmidt, M., Weißhuhn, P., Augustin, J., Funk, R., Häfner, K., König, H., Loft, L., Merz, C., Meyer, C., Piorr, A., Reutter, M., Stachow, U., Stein-Bachinger, K. and Matzdorf, B. 2017. Evaluation of the Ecosystem Services Approach in Agricultural Literature. One Ecosyst., 2: 1-17.
32.    Sohrabi, S., Veisi, H. and Khoshbakht, K. 2021. A Comparative Analysis of Ecosystem Services Valuation in Alternative Agricultural Systems (Case of Dezful County, Khuzestan Province). Environ. Res., 11(22): 45-56.
33.    Sun, Q., Qi, W. and Yu, X. 2021. Impacts of Land Use Change on Ecosystem Services in the Intensive Agricultural Area of North China Based on Multi-Scenario Analysis. Alex. Eng. J., 60(1): 1703–1716.
34.    Swinton, S. M., Jolejole-Foreman, C. B., Lupi, F., Ma, S., Zhang, W. and Chen, H. 2015. Economic Value of Ecosystem Services from Agriculture. The Ecology of Agricultural Landscapes: Long-Term Research on the Path to Sustainability. Oxford University Press, New York, New York, USA.
35.    TEEB. 2010.The Economics of Ecosystems and Biodiversity. 84 p.
36.    Wang, Y., Liu, G., Cai, Y., Giannetti, B., Agostinho, F., Almeida, C. M. V. B. and Casazza, M. 2022. The Ecological Value of Typical Agricultural Products: An Emergy-Based Life-Cycle Assessment Framework. Front. Environ. Sci., 10: 1-20
37.    Yücenur, G. N. and Ipekçi, A. 2021. SWARA/WASPAS Methods for a Marine Current Energy Plant Location Selection Problem. Renew. Energy, 163: 1287–1298
38.    Zavadskas, E. and Turskis, Z., 2010. A New Additive Ratio Assessment (ARAS) Method in Multicriteria Decision‐Making, Technol. Econ. Dev. Econ., 16(2): 159-172.
39.    Zolfani S. and Saparauskas J. 2013. New Application of SWARA Method in Prioritizing Sustainability Assessment Indicators of Energy System. INZ EKON., 24(5): 408-414.
40.    Xu, Z. and Peng, J. 2022. Ecosystem Services-Based Decision-Making: A Bridge from Science to Practice. Environ. Sci. Policy, 135: PP. 6-15.