ABA accumulation and PsAO gene expression in field pea under water deficit

Document Type : Original Research

Author
Senior Research Assistant
Abstract
The plant hormone abscisic acid (ABA) plays a crucial role in plant responses to drought and other abiotic stresses, facilitating adaptation mechanisms under water-deficit conditions. This study aimed to investigate the response of field pea (Pisum sativum) varieties to drought stress by evaluating ABA concentrations, stomatal conductance, and the expression of PsAO genes during the third leaf pair stage. Drought stress was simulated by withholding irrigation to impose moderate and severe levels of water deficit. A statistically significant increase in ABA concentration was observed in all tested pea varieties under stress conditions. Under moderate drought, stomatal responses varied among genotypes; however, severe drought triggered accelerated stomatal closure across all varieties. The cultivar Dukat exhibited the highest stomatal sensitivity, which corresponded with a tenfold increase in ABA concentration, suggesting a strong reliance on chemical (ABA-mediated) drought signaling. In contrast, Javor showed only a modest (2.5-fold) increase in ABA, despite reduced stomatal conductance, indicating a likely reliance on hydraulic signals for drought response. Gene expression analysis revealed that PsAO2 and PsAO3 genes were upregulated under drought, while PsAO1 expression remained relatively unchanged compared to control plants. Notably, PsAO3 expression was consistently elevated under both moderate and severe drought, suggesting that this gene may play a central role in conferring drought tolerance in field pea. These findings highlight the importance of ABA biosynthesis and signaling, particularly via PsAO3, in the adaptation of pea plants to water-deficit conditions.

Keywords

Subjects


Agurla, S., Gahir S., Munemasa S., Murata Y. and Raghavendra A. 2018. Mechanism of Stomatal Closure in Plants Exposed to Drought and Cold Stress. Adv. Exp. Med. Biol., 1081: 215-232, doi:10.1007/978-981-13-1244-1_12.
Alves, A. A. C. and Setter, T. L. 2004. Abscisic acid accumulation and osmotic adjustment in cassava under water deficit. Environ. Exp. Bot., 51: 259-271. doi.org/10.1016/j.envexpbot.2003.11.005.
Bahrun, A., Jensen, C.R., Asch, F., Mogensen, V.O., 2002. Drought‐induced changes in xylem pH, ionic composition, and ABA concentration act as early signals in field‐grown maize (Zea mays L.). J. Exp. Bot., 53(367): 251-263. doi: 10.1093/jexbot/53.367.251.
Bawa G., Yu X., Liu Z., Zhou Y., Sun X., 2020. Surviving the enemies: Regulatory mechanisms of stomatal function in response to drought and salt stress. Environ. Exp. Bot., 209: 10521, doi: 10.1016/j.envexpbot.2023.105291.
Bharath, P., Gahir, S. and Raghavendra, A. S. 2021. Abscisic Acid-Induced Stomatal Closure: An Important Component of Plant Defense Against Abiotic and Biotic Stress. Front. Plant Sci., 12:615114. doi: 10.3389/fpls.2021.615114.
Brookbank, B.P.; Patel, J.; Gazzarrini, S.; Nambara, E. 2021. Role of Basal ABA in Plant Growth and Development. Genes. 12: 1936. https://doi.org/10.3390/ genes12121936.
Cazzonelli, C.I. 2011. Carotenoids in nature: insights from plants and beyond. Funct. Plant Biol., 38 (11): 833-847. doi: 10.1071/FP11192.
Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., Abrams, S. R. 2010. Abscisic acid: Emergence of a core signaling network. Ann. Rev. Plant Biol., 61: 651-679.
Davies, W. J., Kudoyarova, G., Hartung, W. 2005. Long-distance ABA Signaling and Its Relation to Other Signaling Pathways in the Detection of Soil Drying and the Mediation of the Plant’s Response to Drought. J. Plant Growth Regul., 24: 285-295. doi: 10.1007/s00344-005-0103-1.
Davies, W. J., Zhang, J., 1991. Root Signals and the Regulation of Growth and Development of Plants in Drying Soil. Ann. Rev. Plant Physiol. Plant Mol. Biol., 42: 55-76. doi: 10.1146/annurev.pp.42.060191.000415.
Driesen, E.; Van den Ende, W.; De Proft, M.; Saeys, W. Influence of Environmental Factors Light, CO2, Temperature, and Relative Humidity on Stomatal Opening and Development: A Review. 2020. Agronomy., 10: 1975. https://doi.org/10.3390/agronomy10121975.
Ferguson J. 2019. Climate change and abiotic stress mechanisms in plants. Emer. Top. Life Sci., (2): 165–181. doi: https://doi.org/10.1042/ETLS20180105.
Goodger, J. Q. D., Sharp, R. E., Marsh, E. L., Schachtman, D. P. 2005. Relationships between xylem sap constituents and leaf conductance of well-watered and water-stressed maize across three xylem sap sampling techniques. J. Exp. Bot., 56 (419): 2389−2400. doi:10.1093/jxb/eri231.
Gowing, D. J. G., Davies, W. J. and Jones, H. G. 1990. A Positive Root-sourced Signal as an Indicator of Soil Drying in Apple, Malus x domestica Borkh. J. Exp. Bot., 41 (12): 1535-1540. doi.org/10.1093/jxb/41.12.1535.
Kollist, H., Zandalinas, S. I., Sengupta, S., Nuhkat, M., Kangasjärvi, J., and Mittler, R. 2019. Rapid responses to abiotic stress: priming the landscape for the signal transduction network. Trends Plant Sci., 24 (1): 25-37. doi: 10,1016/j.tplants.2018.10.003.
Latif, H. H. 2014. Physiological responses of Pisum sativum plant to exogenous ABA application under drought conditions. Pak. J. Bot., 46 (3): 973-982.
Liu, H. R., Sun, G. W., Dong, L. J., Yang, L. Q., Yu, S. N., Zhang, S. L. and Liu, J. F., 2017. Physiological and molecular responses to drought and salinity in soybean. Biol. Plant., 61: 557-564. doi: 10.1007/s10535-017-0703-1.
Maksimović, I., Putnik-Delić, M., Gani, I., Marić J. and Ilin Ž. (2010). Growth, ion composition, and stomatal conductance of peas exposed to salinity. Cent. Europ. J. Biol., 5: 682–690. doi:10.2478/s11535-010-0052-y.
Matkowski H. and Daszkowska-Golec A. (2023): Update on stomata development and action under abiotic stress. Front. Plant Sci., (14): 1270180 doi: 10.3389/fpls.2023.1270180.
McAdam, S. A. M., Sussmilch, F.C. and Brodribb, T. J. 2016. Stomatal responses to vapour pressure deficit are regulated by high speed gene expression in angiosperms. Plant Cell Environ., 39: 485-491. doi: 10.1111/pce.12633.
Mercado-Reyes, J., Soares Pereira T., Manandhar A., Rimer I. and McAdam S. 2024. Extreme drought can deactivate ABA biosynthesis in embolism-resistant species. Plant Cell Environ., 47 (2): 383-725. https://doi.org/10.1111/pce.14754.
Nakashima, K. and Yamaguchi-Shinozaki, K., 2013. ABA signaling in stress-response and seed development. Plant Cell Rep., 32: 959-970. doi: 10.1007/s00299-013-1418-1.
Petrović, G., Jovičić, D., Nikolić, Z., Tamindžić, G., Ignjatov, M., Milošević, D. and Milošević, B. 2016. Comparative study of drought and salt stress effects on germination and seedling growth of pea. Genetika., 48 (1): 373-381. doi.org/10.2298GENSR1601373P.
Petrović, G., Živanović, T., Stikić, R., Nikolić, Z., Jovičić, D., Tamindžić, G. and Milošević D. 2021. Effects of Drought Stress on Germination and Seedling Growth of Field Pea. Matica Srpska J. Nat. Sci., 140: 59-70. doi.org/10.2298/ZMSPN2140059P.
Rivera-Becerril, F., Metwally, A., Martin-Laurent, F., Van Tuinen, D., Dietz, K.J., Gianinazzi, S. and Gianinazzi-Pearson V. 2005. Molecular Responses to Cadmium in Roots of Pisum Sativum L. Water Air Soil Pollut., 168: 171-186. doi: 10.1007/s11270-005-1247-0.
Ruiz-Sola, M. Á., Arbona. V., Gómez-Cadenas, A., Rodríguez-Concepció, M. and Rodríguez-Villalón, A. 2014. A Root Specific Induction of Carotenoid Biosynthesis Contributes to ABA Production upon Salt Stress in Arabidopsis. PLoS ONE., 9 (3): e90765. doi:10.1371/journal.pone.0090765.
Sah, S. K., Reddy, K. R. and Li, J. 2016. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. Front. Plant Sci., 7: 571. doi.org/10.3389/fpls.2016.00571.
Santner, A., Calderon-Villalobos, L.I. and Estelle, M., 2009. Plant hormones are versatile chemical regulators of plant growth. Nat. Chem. Biol., 5: 301-307. doi: 10.1038/nchembio.165.
Sassi S., Aydi S., Hessini K., Gonzalez E. M., Arrese-Igor C. and Abdelly C. 2010. Longterm mannitol-induced osmotic stress leads to stomatal closure, carbohydrate accumulation and changes in leaf elasticity in Phaselous vulgaris leaves. Afr. J. Biotechnol., 9: 6061-6069.
Schachtman., D. P. and Goodger., Q. D. 2008. Chemical root to shoot signaling under drought. Trends Plant Sci., 13 (6): 281-287. doi: 10.1016/j.tplants.2008.04.003.
Seo M., Aoki H., Koiwai H., Kamiya Y., Nambara E. and Koshiba T. 2004. Comparative Studies on the Arabidopsis Aldehyde Oxidase (AAO) Gene Family Revealed a Major Role of AAO3 in ABA Biosynthesis in Seeds. Plant Cell Physiol., 45(11): 1694−1703. doi.org/10.1093/pcp/pch198.
Tuteja, N. 2007. Abscisic Acid and Abiotic Stress Signaling. Plant Signal. Behav., 2: 135-138. doi.org/10.1007/s00299-013-1418-1.
Xiong, L. and Zhu, J. K., (2003). Regulation of Abscisic Acid Biosynthesis. Plant Physiol., 133: 29-36.
Wilkinson, S. and Davies, W. J. 2008. Manipulation of the apoplastic pH of intact plants mimics stomatal and growth responses to water availability and microclimatic variation. J. Exp. Botany., 59 (3): 619-631. doi:10.1093/jxb/erm338.
Wu, J., Kamanga, B. M., Zhang, W., Xu, Y. and Xu, L. 2022. Research progress of aldehyde oxidases in plants. PeerJ., 10: e13119 doi:10.7717/peerj.13119.
Van Norman, J. M., Zhang, J., Cazzonelli, C. I., Pogson, B. J., Harrison, P. J., Bugg, T. D. H., Chan, K. X., Thompson, A. J. and Benfey, P. N. 2014. Lateral root formation requires a carotenoid. Proc. Nat. Acad. Sci.., 111 (13): E1300-1309. doi:10.1073/pnas.1403016111.
Yao, P., Zhang, C., Zhang, D., Qin, T., Xie, X., Liu, Y., Liu, Z., Bai, J., Bi, Z., Cui, J., et al. 2023. Characterization and Identification of Drought-Responsive ABA-Aldehyde Oxidase (AAO) Genes in Potato (Solanum tuberosum L.). Plants., 12: 3809. https://doi.org/10.3390/plants12223809.
Zdunek-Zastocka, E., 2008. Molecular cloning, characterization and expression analysis of three aldehyde oxidase genes from Pisum sativum L. Plant Physiol. Biochem., 46: 19-28. doi: 10.1016/j.plaphy.2007.09.011.
Zdunek-Zastocka, E., Omarov, R. T., Koshiba, T. and Lips, H. S. 2004. Activity and protein level of AO isoforms in pea plants (Pisum sativum L.) during vegetative development and in response to stress conditions. J. Exper. Botany., 55(401):1361-1369. doi: 10.1093/jxb/erh134.
Zdunek, E. and Lips, H. 2001. Transport and accumulation rates of abscisic acid and aldehyde oxidase activity in Pisum sativum L. in response to suboptimal growth conditions. J. Exper. Botany., 52: 1269-1276. doi: 10.1093/jexbot/52.359.1269.

Articles in Press, Accepted Manuscript
Available Online from 01 January 2024