Pathogenicity and Phylogenetics of Alternaria alternata Affecting Tulipa L. in Greenhouse Conditions of the Botanical Garden

Document Type : Original Research

Authors
1 Department of Biology, Khoja Akhmet Yassawi International Kazakh-Turkish University
2 Karavansaray Tourist Complex, Khoja Akhmet Yassawi International Kazakh-Turkish University
Abstract
The study aimed to assess the pathogenicity of the fungus Alternaria alternata on various Tulipa L. species and elucidate its phylogenetic position. The research focused on five specific tulip varieties: T. Albatros, T. Tarda, T. Delta Storm, T. Biflora, and T. Biebersteiniana. Methodologies included molecular analysis, microscopic examinations, cultivation of fungi on PDA, and sequencing of the 18S and 5.8S rRNA genes, as well as the D1/D2 region of the 26S rRNA gene. Results revealed variable pathogenicity across tulip species, with T. Albatros showing complete leaf damage and extensive conidium formation, while T. Biebersteiniana exhibited minimal damage. Factors influencing infection severity included plant variety, conidium formation, and environmental conditions. Sequencing confirmed the fungus's affiliation with the Alternaria genus and highlighted its close relation to other species. The findings underscore the importance of molecular methods for accurate pathogen identification and phylogenetic classification. These results are crucial for developing targeted disease management strategies and enhancing plant resilience in agriculture.The application of the findings is feasible within agriculture to develop resilient varieties and methods for managing the dissemination of A. alternata. Plant diseases involve complex interactions between pathogens and hosts, where fungi like Alternaria alternata disrupt plant physiology through toxin production and enzyme secretion, making effective management crucial

Keywords

Subjects


Abiev, S. A. 2002. Rust fungi of Kazakhstan. Gylym, Almaty.
Ansari, A. A., Siddiqui, Z. H., Alatawi, F. A., Alharbi, B. M. and Alotaibi, A. S. 2022. An assessment of biodiversity in Tabuk Region of Saudi Arabia: A comprehensive review. Sustainability, 14(17): 10564. https://doi.org/10.3390/su141710564
Banchi, E., Ametrano, C. G., Greco, S., Stanković, D., Muggia, L. and Pallavicini, A. 2020a. PLANiTS: A curated sequence reference dataset for plant ITS DNA metabarcoding. Database, 2020: baz155. https://doi.org/10.1093/database/baz155
Banchi, E., Ametrano, C. G., Tordoni, E., Stanković, D., Ongaro, S., Tretiach, M., Pallavicini, A., Muggia, L. and ARPA Working Group. 2020b. Environmental DNA assessment of airborne plant and fungal seasonal diversity. Sci. Total Environ., 738: 140249. https://doi.org/10.1016/j.scitotenv.2020.140249
Baturo-Ciesniewska, A., Pusz, W. and Patejuk, K. 2020. Problems, limitations, and challenges in species identifcation of Ascomycota members on the basis of ITS regions. Acta Mycol., 55(1): 5512. https://doi.org/10.5586/am.5512
Bauer, M., Mukhametov, A. and Trifonov, P. 2023. Relationship between the state of the countrys logistics and perishable goods output: dairy industry. The TQM Journal, 35 (7): 1799-1814. https://doi.org/10.1108/TQM-04-2022-0131
Bavbek, S., Erkekol, F. O., Ceter, T., Mungan, D., Ozer, F., Pinar, M. and Misirligil, Z. 2006. Sensitization to Alternaria and Cladosporium in patients with respiratory allergy and outdoor counts of mold spores in Ankara atmosphere, Turkey. J. Asthma, 43(6): 421–426. https://doi.org/10.1080/02770900600710706
Bush, R. K. and Prochnau, J. J. 2004. Alternaria‐induced asthma. J. Allergy Clin. Immunol., 113(2): 227–234. https://doi.org/10.1016/j.jaci.2003.11.023
Chacón, F. I., Sineli, P. E., Mansilla, F. I., Pereyra, M. M., Diaz, M. A., Volentini, S. I., Poehlein, A., Meinhardt, F., Daniel, R. and Dib, J. R. 2022. Native cultivable bacteria from the blueberry microbiome as novel potential biocontrol agents. Microorganisms, 10(5): 969. https://doi.org/10.3390/microorganisms10050969
De Clerck, E., Vanhoutte, T., Hebb, T., Geerinck, J., Devos, J. and De Vos, P. 2004. Isolation, characterization, and identification of bacterial contaminants in semifinal gelatin extracts. AEM, 70(6): 3664-3672. https://doi.org/10.1128/AEM.70.6.3664-3672.2004
Didelon, M., Khafif, M., Godiard, L., Barbacci, A. and Raffaele, S. 2020. Patterns of sequence and expression diversification associate members of the PADRE gene family with response to fungal pathogens. Front. Genet., 11: 491. https://doi.org/10.3389/fgene.2020.00491
Fung, F., Tappen, D. and Wood, G. 2000. Alternaria-associated asthma. Appl. Occup. Environ. Hyg., 15(12): 924–927. https://doi.org/10.1080/104732200750051157
Gannibal, Ph. B. 2011. Understanding the phylogeny of the alternarioid hyphomycetes: What can the consequences be in taxonomy? In: Systematics and evolution of Fungi, (Eds.): Misra, J. K., Tewari, J. P. and Deshmukh, S. K. CRC Press, Boca Raton, PP. 305–333.
Hannibal, F. B. 2011. Monitoring of crop alternariosis and identification of fungi of the genus Alternaria. GNU VIZR Russian Agricultural Academy, Saint Petersburg.
Hashimoto, S., Tanaka, E., Ueyama, M., Terada, S., Inao, T., Kaji, Y., Yasuda, T., Hajiro, T., Nakagawa, T., Noma, S., Honjo, G., Kobashi, Y., Abe, N., Kamei, K. and Taguchi, Y. 2019. A case report of pulmonary Botrytis sp. infection in an apparently healthy individual. BMC Infect. Dis., 19(1): 684. https://doi.org/10.1186/s12879-019-4319-2
Iqbal, A., Khan, R. S., Shehryar, K., Imran, A., Ali, F., Attia, S., Shah, S. and Mii, M. 2019. Antimicrobial peptides as effective tools for enhanced disease resistance in plants. PCTOC, 139: 1–15. https://doi.org/10.1007/s11240-019-01668-6
Jin, G. Q., Mao, G. Y., Li, D. W., Wan, Y. and Zhu, L. H. 2021. First report of Alternaria alternata causing leaf spots of Liriodendron chinense× tulipifera in China. J. Plant Pathol., 103: 689–690. https://doi.org/10.1007/s42161-021-00775-8
Jitjak, W., Chairop, W. and Sanoamuang, N. 2021. Molecular Identification of fungal species causing brown circular leaf spot disease in seedlings of Siamese Rosewood (Dalbergia cochinchinensis Pierre ex Laness). Sci. Technol. Asia, 26(3): 156–166.
Karabassov R., Bauer M., Mogilnyy S., Mauyanova A., Mikhnova S. 2018. Development of recommendations to create the conditions for attraction of highly-qualified specialists to the farming sector of Kazakhstan (based on the materials of the Akmola region). Revista Espacios, 39(12): 20-22.
Karimzadeh, S. and Fotouhifar, K. B. 2021. Report of some fungi of Pleosporaceae family associated with leaf spot symptoms of plants in Chaharmahal and Bakhtiari province, Iran. J. Crop Prot., 10(2): 319–340.
Kaur, S. 2023. An overview on fungal diseases in angiospermic plants. Asian Plant Res. J., 11(2): 24–33. https://doi.org/10.9734/aprj/2023/v11i2207
Khmelnitskaya, I. I., Vepritskaya, I. G., Arinbasarov, M. U. and Velikanov, L. L. 2003. Soil Deuteromycetes of central and eastern areas of Samara Oblast. Mycol. Phytopathol., 37(3): 58–63.
Kuprienko, N. P. 2005. Diseases of onions in Belarus. Belprim, Minsk.
Kuroyanagi, T., Bulasag, A. S., Fukushima, K., Ashida, A., Suzuki, T., Tanaka, A., Camagna, M., Sato, I., Chiba, S., Ojika, M. and Takemoto, D. 2022. Botrytis cinerea identifies host plants via the recognition of antifungal capsidiol to induce expression of a specific detoxification gene. PNAS Nexus, 1(5): pgac274. https://doi.org/10.1093/pnasnexus/pgac274
Maksimov, I. V., Singh, B. P., Cherepanova, E. A., Burkhanova, G. F. and Khairullin, R. M. 2020. Prospects and applications of lipopeptide-producing bacteria for plant protection. Appl. Biochem. Microbiol., 56: 15–28. https://doi.org/10.1134/S0003683820010135
Mehmood, M. A., Zhao, H., Cheng, J., Xie, J., Jiang, D. and Fu, Y. 2020. Sclerotia of a phytopathogenic fungus restrict microbial diversity and improve soil health by suppressing other pathogens and enriching beneficial microorganisms. J. Environ. Manage., 259: 109857. https://doi.org/10.1016/j.jenvman.2019.109857
Mekapogu, M., Jung, J. A., Kwon, O. K., Ahn, M. S., Song, H. Y. and Jang, S. 2021. Recent progress in enhancing fungal disease resistance in ornamental plants. Int. J. Mol. Sci., 22(15): 7956. https://doi.org/10.3390/ijms22157956
Mishra, P. K., Fox, R. T. and Culham, A. 2003. Development of a PCR-based assay for rapid and reliable identification of pathogenic Fusaria. FEMS Microbiol. Lett., 218(2): 329–332. https://doi.org/10.1111/j.1574-6968.2003.tb11537.x
Ospanov A. A, Muslimov N. Z, Timurbekova A. K, Mamayeva L. A, Jumabekova G. B. 2020. The Effect of Various Dosages of Poly-Cereal Raw Materials on the Drying Speed and Quality of Cooked Pasta During Storage. Curr Res Nutr Food Sci, 8(2): 1-10. doi: http://dx.doi.org/10.12944/CRNFSJ.8.2.11
Ospanov, A.A., Popescu, C.V., Muslimov, N.Z., Gaceu, L., Timurbekova, A.K., Stefan, M., Dune, A., Popescu, C., & Jumabekova, G.B. 2018. Study of the food safety and nutritional value of the buckwheat grains of Kazakhstani selection. Journal of Hygienic Engineering and Design, 22: 33-38.
Otero-Blanca, A., Pérez-Llano, Y., Reboledo-Blanco, G., Lira-Ruan, V., Padilla-Chacon, D., Folch-Mallol, J. L., Sánchez-Carbente. M. d. R., Ponce De León, I. and Batista-García, R. A. 2021. Physcomitrium patens infection by Colletotrichum gloeosporioides: Understanding the fungal–bryophyte interaction by microscopy, phenomics and RNA sequencing. J. Fungi., 7(8): 677. https://doi.org/10.3390/jof7080677
Pandit, M. A., Kumar, J., Gulati, S., Bhandari, N., Mehta, P., Katyal, R., Rawat, C. D., Mishra, V. and Kaur, J. 2022. Major biological control strategies for plant pathogens. Pathogens, 11(2): 273. https://doi.org/10.3390/pathogens11020273
Robertshaw, H. and Higgins, E. 2005. Cutaneous infection with Alternaria tenuissima in an immunocompromised patient. Br. J. Dermatol., 153(5): 1047–1049. https://doi.org/10.1111/j.1365-2133.2005.06833.x.
Salybekova, N. N., Basim, E., Basim, H. and Turmetova, G. Zh. 2019. Characterization of Alternaria brassicae causing black leaf spot disease of cabbage (Brassica oleracea var. capitata) in the southern part of Kazakhstan. Acta Sci. Pol. Hortorum Cultus., 18(4): 3–13. https://doi.org/10.24326/asphc.2019.4.1
Srivastava, S., Dashora, K., Ameta, K. L., Singh, N. P., El‐Enshasy, H. A., Pagano, M. C., Hesham, A. E., Sharma, G. D., Sharma, M. and Bhargava, A. 2021. Cysteine‐rich antimicrobial peptides from plants: The future of antimicrobial therapy. Phytother. Res., 35(1): 256–277. https://doi.org/10.1002/ptr.6823
Stander, E. A., Williams, W., Mgwatyu, Y., Heusden, P. V., Rautenbach, F., Marnewick, J., Roes-Hill, M. L. and Hesse, U. 2020. Transcriptomics of the rooibos (Aspalathus linearis) species complex. Biotech, 9(4): 19. https://doi.org/10.3390/biotech9040019
Stauder, C. M., Utano, N. M. and Kasson, M. T. 2020. Resolving host and species boundaries for perithecia-producing nectriaceous fungi across the central Appalachian Mountains. Fungal Ecol., 47: 100980. https://doi.org/10.1016/j.funeco.2020.100980
Verma, V., Kumar, A., Verma, J. and Priti, B. B. 2022. Conventional and molecular interventions for biotic stress resistance in floricultural crops. In: Genomic designing for biotic stress resistant technical crops. Springer, Cham, PP. 227–246.
Wang, C., Zhang, Y., Zhang, W., Yuan, S., Ng, T. and Ye, X. 2019a. Purification of an antifungal peptide from seeds of Brassica oleracea var. gongylodes and investigation of its antifungal activity and mechanism of action. Molecules, 24(7): 1337. https://doi.org/10.3390/molecules24071337
Wang, W., Chen, X., Yan, H., Hu, J. and Liu, X. 2019b. Complete genome sequence of the cyprodinil-degrading bacterium Acinetobacter johnsonii LXL_C1. Microb. Pathog., 127: 246–249. https://doi.org/10.1016/j.micpath.2018.11.016
Xu, Y. 2023. Genetic dissection of Sclerotinia sclerotiorum biology using forward genetics Published doctoral dissertation, University of British Columbia.
Zhou, Q., Yang, Y., Ahmed, H., Wang, Y., Zahr, K., Fu, H., Sarkes, A. and Feng, J. 2020. Diseases Diagnosed on samples submitted to the Alberta Plant Health Lab in 2019. Canad. J. Plant Pathol., 42: 11–15.
Zhou, T., Liu, H., Huang, Y., Wang, Z., Shan, Y., Yue, Y., Xia, Z., Liang, Y., An, M. and Wu, Y. 2021. ε-poly-L-lysine Affects the Vegetative Growth, Pathogenicity and Expression Regulation of Necrotrophic Pathogen Sclerotinia sclerotiorum and Botrytis cinerea. J. Fungi, 7(10): 821. https://doi.org/10.3390/jof7100821
Zhu, H. Y., Ma, Y., Ke, Y. and Li, B. 2021. Screening and identification of an antagonist against the pathogen of kiwifruit canker and its antifungal activity to the phytopathogenic fungus. Biotechnol. Bull., 37(6): 66–72. https://doi.org/10.13560/j.cnki.biotech.bull.1985.2020-0473