Effect of Dietary Energy Source and Level on the Performance, Antibody Titers and the Relative Expression of IL-2 and IL-6 Genes in Broilers under Heat Stress

Document Type : Original Research

Authors
1 Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Islamic Republic of Iran.
2 Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Islamic Republic of Iran.
3 Department of Biotechnology, Science and Research Branch, Islamic Azad University, Tehran, Islamic Republic of Iran.
Abstract
This study aimed to determine the effects of energy levels and sources on growth performance, antibody titers, and the gene expression of pro-inflammatory cytokines in broilers exposed to heat stress. A total of 450 one-day-old Ross chickens were assigned to six dietary treatments and five replicates in a completely randomized design. Chickens received diets differentiated by the main energy source (corn grain and soybean oil) and energy level (equal, 3% or 6% lower or higher than Ross 308 recommendation). Treatments were as follows: corn grain and equal as Control (CON), 3% lower corn grain (T1), 6% lower corn grain (T2), corn grain and soybean oil, equal (T3), 3% higher corn grain and soybean oil (T4), 6% higher corn grain and soybean oil (T5). The room temperature was increased to 34°C (6-h daily) from day 12 to 42 of age to induce heat stress. The highest corticosterone level was observed in T1, T2, and T5 groups. The lowest antibody titers were observed in T2 group and the highest expression levels of pro-inflammatory cytokines genes were in chickens receiving T5 diet. The highest Feed Conversion Ratio (FCR) during the grower and finisher periods was observed in T2, and the lowest in T3 and T4. It was recommended to feed Ross broiler with a diet containing oil instead of a part of grain based on energy recommended by the strain recommendation.

Keywords


1.       Aami Azghadi, M., Kermanshahi, H. and Golian, A. 2014. The Effect of Dietary Energy Andprotein Levels on Growth Performance and Antibody Responses of Offspring of Laying Japanese Quails. Iran. J. Appl. Anim. Sci., 4(1): 185-190.
2.       Allan WH, Gough RE. A Standard Haemagglutination Inhibition Test for Newcastle Disease. (1). A Comparison of Macro and Micro Methods. Vet Rec. 1974 Aug 10; 95(6):120-3. doi: 10.1136/vr.95.6.120.
3.       Azizi, B., Sadeghi, G., Karimi, A. and Abed, F. 2011. Effects of Dietary Energy and Protein Dilution and Time of Feed Replacement from Starter to Grower on Broiler Chickens Performance. J. Central Eur. Agric., 12(1): 44-52.
4.       Bogin, E., Avidar, Y., Pech-Waffenschmidt, V., Doron, Y., Israeli, B. A. and Kevkhayev, E. 1996. The Relationship between Heat Stress, Survivability and Blood Composition of the Domestic Chicken. Eur. J. Clin. Chem. Clin. Biochem., 34(6): 463-469.
5.       Cheng, H. W. and Jefferson, L. 2008. Different Behavioral and Physiological Responses in Two Genetic Lines of Laying Hens after Transportation. Poult. Sci., 87(5): 885-892.
6.       Cherian, G. 2015. Nutrition and Metabolism in Poultry: Role of Lipids in Early Diet. J. Anim. Sci. Biotechnol., 6(1): 1-9.
7.       Classen, H. L. 2017. Diet Energy and Feed Intake in Chickens. Anim. Feed Sci. Technol., 233: 13-21.
8.       Costantino, A., Fabrizio, E., Ghiggini, A. and Bariani, M. 2018. Climate Control in Broiler Houses: A Thermal Model for the Calculation of the Energy Use and Indoor Environmental Conditions. Energy Build., 169: 110-126.
9.       Daghir, N. J. 2009. Nutritional Strategies to Reduce Heat Stress in Broilers and Broiler Breeders. Lohmann Inform., 44(1): 6-15.
10.    Emami, N. K., Greene, E. S., Kogut, M. H. and Dridi, S. 2021. Heat Stress and Feed Restriction Distinctly Affect Performance, Carcass and Meat Yield, Intestinal Integrity, and Inflammatory (Chemo) Cytokines in Broiler Chickens. Front. Physiol., 12: 707757.
11.    Fisinin, V. I. and Kavtarashvili, A. S. 2015. Heat Stress in Poultry. II. Methods and Techniques for Prevention and Alleviation. Agri. Biol., 50(4): 431-443.
12.    Goel, A., Ncho, C. M., and Choi, Y. H. 2021. Regulation of Gene Expression in Chickens by Heat Stress. J. Anim. Sci. Biotechnol., 12(1): 1-13.
13.    He, S. P., Arowolo, M. A., Medrano, R. F., Li, S., Yu, Q. F., Chen, J. Y. and He, J. H. 2018. Impact of Heat Stress and Nutritional Interventions on Poultry Production. World's Poult. Sci. J., 74(4): 647-664.
14.    Helwig, B. G. and Leon, L. R. 2011. Tissue and Circulating Expression of IL-1 Family Members Following Heat Stroke. Physiol. Genom., 43(19): 1096-1104.
15.    Herd, R. M. and Arthur, P. F. 2009. Physiological Basis for Residual Feed Intake. J. Anim. Sci., 87(Suppl. 14): E64-E71.
16.    Higami, Y., Barger, J. L., Page, G. P., Allison, D. B., Smith, S. R., Prolla, T. A. and Weindruch, R. 2006. Energy Restriction Lowers the Expression of Genes Linked to Inflammation, the Cytoskeleton, the Extracellular Matrix, and Angiogenesis in Mouse Adipose Tissue. J. Nutr., 136(2): 343-352.
17.    Hirakawa, R., Nurjanah, S., Furukawa, K., Murai, A., Kikusato, M., Nochi, T. and Toyomizu, M. 2020. Heat Stress Causes Immune Abnormalities via Massive Damage to Effect Proliferation and Differentiation of Lymphocytes in Broiler Chickens. Front. Vet. Sci., 7: 46.
18.    Jariyahatthakij, P., Chomtee, B., Poeikhampha, T., Loongyai, W. and Bunchasak, C. 2018. Effects of Adding Methionine in Low-Protein Diet and Subsequently Fed Low-Energy Diet on Productive Performance, Blood Chemical Profile, and Lipid Metabolism-Related Gene Expression of Broiler Chickens. Poult. Sci., 97(6): 2021-2033.
19.    Kim, J. H., Lee, H. K., Yang, T. S., Kang, H. K. and Kil, D. Y. 2019. Effect of Different Sources and Inclusion Levels of Dietary Fat on Productive Performance and Egg Quality in Laying Hens Raised under Hot Environmental Conditions. Asian-Austral. J. Anim. Sci., 32(9):1407-1412.
20.    Kitaysky, A. S., Piatt, J. F., Wingfield, J. C. and Romano, M. 1999. The Adrenocortical Stress-Response of Black-Legged Kittiwake Chicks in Relation to Dietary Restrictions. J. Comp. Physiol. B, 169: 303-310.
21.    Kochumon, S., Al Madhoun, A., Al-Rashed, F., Thomas, R., Sindhu, S., Al-Ozairi, E. and Ahmad, R. 2020. Elevated Adipose Tissue Associated IL-2 Expression in Obesity Correlates with Metabolic Inflammation and Insulin Resistance. Sci. Rep., 10(1): 16364.
22.    Kpomasse, C. C., Oke, O. E., Houndonougbo, F. M. and Tona, K. 2021. Broiler Production Challenges in the Tropics: A Review. Vet. Med. Sci., 7(3): 831-842.
23.    Livak K. J., Schmittgen T. D. Analysis of Relative Gene Expression Data Using Real-time Quantitative PCR and the 2(-Delta Delta C(T)) Method. 2001 Dec; 25(4):402-8. doi: 10.1006/meth.2001.1262.
24.    Long, G. L., Hao, W. X., Bao, L. F., Li, J. H., Zhang, Y. and Li, G. H. 2019. Effects of Dietary Inclusion Levels of Palm Oil on Growth Performance, Antioxidative Status and Serum Cytokines of Broiler Chickens. J. Anim. Physiol. Anim. Nutr., 103(4): 1116-1124.
25.    Mack, L. A., Felver-Gant, J. N., Dennis, R. L. and Cheng, H. W. 2013. Genetic Variations Alter Production and Behavioral Responses Following Heat Stress in 2 Strains of Laying Hens. Poult. Sci., 92(2): 285-294.
26.    Mancinelli, A. C., Baldi, G., Soglia, F., Mattioli, S., Sirri, F., Petracci, M. and Zampiga, M. 2023. Impact of Chronic Heat Stress on Behavior, Oxidative Status and Meat Quality Traits of Fast-Growing Broiler Chickens. Front. Physiol., 14: 1-8.
27.    Mu, H., Shen, H., Liu, J., Xie, F., Zhang, W. and Mai, K. 2018. High Level of Dietary Soybean Oil Depresses the Growth and Anti-oxidative Capacity and Induces Inflammatory Response in Large Yellow Croaker Larimichthys crocea. Fish Shellfish Immunol., 77: 465-473.
28.    Ndlebe, L., Tyler, N. C. and Ciacciariello, M. 2023. Effect of Varying Levels of Dietary Energy and Protein on Broiler Performance: A Review. World's Poult. Sci. J., 79(3): 449-465.
29.    Nikravesh-Masouleh, T., Seidavi, A. R., Kawka, M. and Dadashbeiki, M. 2018. The Effect of Dietary Energy and Protein Levels on Body Weight, Size, and Microflora of Ostrich Chicks. Trop. Anim. Health Prod., 50(3): 635-641.
30.    Özbey, O., Yıldız, N., Aysöndü, M. H. and Özmen, Ö. 2004. The Effects of High Temperature on Blood Serum Parameters and the Egg Productivity Characteristics of Japanese Quails (Coturnix coturnix japonica). Inter. J. Poult. Sci., 3(7): 485-489.
31.    Paraskeuas, V. V. and Mountzouris, K. C. 2019. Modulation of Broiler Gut Microbiota and Gene Expression of Toll-Like Receptors and Tight Junction Proteins by Diet Type and Inclusion of Phytogenics. Poult. Sci., 98(5): 2220-2230.
32.    Rafiei-Tari, A., Sadeghi, A. A. and Mousavi, S. N. 2021. Inclusion of Vegetable Oils in Diets of Broiler Chicken Raised in Hot Weather and Effects on Antioxidant Capacity, Lipid Components in the Blood and Immune Responses. Acta Sci. Anim. Sci., 43: 1-6.
33.    Raghebian, M., Sadeghi, A. A. and Aminafshar, M. 2017. Impact of Dietary Energy Density on the Liver Health of Broilers Exposed to Heat Stress and Their Performance during Finisher Period. J. Livest. Sci., 8: 122-130.
34.    Raghebian, M., Sadeghi, A. A. and Aminafshar, M. 2016. Energy Sources and Levels Influenced on Performance Parameters, Thyroid Hormones, and HSP70 Gene Expression of Broiler Chickens under Heat Stress. Trop. Anim. Health Prod., 48: 1697-1702.
35.    Sadeghi, A. A., Mirmohseni, M., Shawrang, P. and Aminafshar, M. 2013. The Effect of Soy Oil Addition to the Diet of Broiler Chicks on the Immune Response. Turk. J. Vet. Anim. Sci., 37(3): 264-270.
36.    Seifi, K., Rezaei, M., Yansari, A. T., Riazi, G. H., Zamiri, M. J. and Heidari, R. 2018. Saturated Fatty Acids May Ameliorate Environmental Heat Stress in Broiler Birds by Sffecting Mitochondrial Energetics and Related Genes. J. Therm. Biol., 78: 1-9.
37.    Soleimani, A. F., Zulkifli, I., Omar, A. R. and Raha, A. R. 2011. Physiological Responses of 3 Chicken Breeds to Acute Heat Stress. Poult. Sci., 90(7): 1435-1440.
38.    Taleb, Z., Sadeghi, A.A., Shawrang, P., Chamani, M. and Aminafshar, M. 2017. Effect of Energy Levels and Sources on the Blood Sttributes and Immune Response in Broiler Chickens Exposed to Heat Stress. J. Livest. Sci., 8: 123-144.
39.    Trayhurn, P. and Wood, I. S. 2004. Adipokines: Inflammation and the Pleiotropic Role of White Adipose Tissue. Br. J. Nutr., 92(3): 347-355.
40.    Teeter, R. G. and Belay, T. 1996. Broiler Management during Acute Heat Stress. Anim. Feed. Sci. Technol., 58(1-2): 127-142.
41.    Quinteiro-Filho, W. M., Ribeiro, A., Ferraz-de-Paula, V., Pinheiro, M. L., Sakai, M., Sá, L. R. M. D. and Palermo-Neto, J. 2010. Heat Stress Impairs Performance Parameters, Induces Intestinal Injury, and Decreases Macrophage Activity in Broiler Chickens. Poult. Sci., 89(9): 1905-1914.
42.    Vandana, G. D., Sejian, V., Lees, A. M., Pragna, P., Silpa, M. V. and Maloney, S. K. 2021. Heat Stress and Poultry Production: Impact and Amelioration. Inter. J. Biometeorol., 65: 163-179.
43.    Xie, J., Tang, L., Lu, L., Zhang, L., Lin, X., Liu, H. C. and Luo, X. 2015. Effects of Acute and Chronic Heat Stress on Plasma Metabolites, Hormones and Oxidant Status in Restrictedly Fed Broiler Breeders. Poult. Sci., 94(7): 1635-1644.
44.    Yang, J., Liu, L., Sheikhahmadi, A., Wang, Y., Li, C., Jiao, H. and Song, Z. 2015. Effects of Corticosterone and Dietary Energy on Immune Function of Broiler Chickens. PLoS One, 10(3): e0119750.
45.    Yaqoob, P. 2004. Fatty Acids and the Immune System: From Basic Science to Clinical Applications. Proc. Nutr. Soc., 63(1): 89-105.
46.    Yuan, L., Lin, H., Jiang, K. J., Jiao, H. C. and Song, Z. G. 2008. Corticosterone Administration and High-Energy Feed Results in Enhanced Fat Accumulation and Insulin Resistance in Broiler Chickens. Br. Poult. Sci., 49(4): 487-495.
47.    Zulkifli, I., Siegel, H. S., Mashaly, M. M., Dunnington, E. A. and Siegel, P. B. 1995. Inhibition of Adrenal Steroidogenesis, Neonatal Feed Restriction, and Pituitary-Adrenal Axis Response to Subsequent Fasting in Chickens. Gen. Comp. Endocrinol., 97(1): 49-56.
48.    Zulkifli, I., Htin, N. N., Alimon, A. R., Loh, T. C. and Hair-Bejo, M. 2007. Dietary Selection of Fat by Heat-Stressed Broiler Chickens. Asian-Austral. J. Anim. Sci., 20(2): 245-251.