Exploring Wild Tomato Species for Morphological Traits, Mineral Elements and Known Disease Resistance Genes

Document Type : Original Research

Authors
1 Department of Agricultural and Livestock Production, Manavgat Vocational School of Higher Education, Akdeniz University, Antalya, Turkey.
2 Department of Agricultural and Livestock Production, Cal Vocational School of Higher Education, Pamukkale University, Denizli, Turkey.
3 Department of Plant Nutrition, Faculty of Agriculture, Akdeniz University, Antalya, Turkey.
4 Vocational School of Technical Science, Akdeniz University, Antalya, Turkey.
5 Department of Horticulture, Faculty of Agriculture, Ege University, Izmir, Turkey.
Abstract
Tomato is one of the worldwide major foods consumed fresh, cooked, or processed. Mineral elements, vitamins, and antioxidant content of tomatoes are of interest because of their nutritional value and beneficial health effects. The present study was performed to evaluate the macro- and micro-elements contents of leaves and fruits of seven wild tomato species, in addition to morphological traits. Wild tomato species had variations for all elements in fruits. Coefficient of variation was calculated for elements as 18.50 to 94.32% for potassium and phosphor, respectively. Most of the wild tomato species had higher content of all mineral elements than cultivated tomato. Resistance genes (Frl, I-2, I-3, Mi-3, Pto Ty-1, Ty-3 and Sw-5) of wild tomato species were screened using molecular markers. LA1971, with six resistant genes, and LA1393 and LA1777, with five resistant genes, were considered the most promising parental candidates for breeding. The results of the analysis of mineral elements of seven wild tomatoes species are useful for future tomato breeding.

Keywords

Subjects


1. Abushita, A.A., Hebshi, E.A., Daood, H.G., Biacs, P.A. 1997. Determination of antioxidant vitamins in tomatoes. Food Chemistry, 60(2): 207-212.
2. Bremner, J.M. 1965. Total nitrogen. In Methods of soil analysis, eds. C.A. Black, Agronomy No. 9, Part 2. Madison, WI, American Society of Agronomy. 1149-1178.
3. Capel, C., Yuste-Lisbona, F. J., López-Casado, G., Angosto, T., Heredia, A., Cuartero, J., ... Capel, J. 2017. QTL mapping of fruit mineral contents provides new chances for molecular breeding of tomato nutritional traits. Theoretical and applied genetics, 130(5): 903-913.
4. Chávez-Servia, J.L., Vera-Guzmán, A.M., Linares-Menéndez, L.R., Carrillo-Rodríguez, J.C., Aquino-Bolaños, E.N. 2018. Agro morphological traits and mineral content in tomato accessions from El Salvador, Central America. Agronomy, 8(3): 32.
5. Davies, J.N., Hobson, L.E. 1981. The constituents of tomato fruit, the influence of environment, nutrition and genotype. Crit Rev Food Sci Nutr, 15:205–280. doi:10.1080/10408398109527317.
6. De Castro, A. P., Blanca, J. M., Díez, M. J., Vinals, F. N. (2007). Identification of a CAPS marker tightly linked to the Tomato yellow leaf curl disease resistance gene Ty-1 in tomato. European Journal of Plant Pathology, 117(4): 347-356.
7. Dianese, E.C., de Fonseca, M.E.N., Goldbach, R., Kormelink, R., Inoue-Nagata, A. K., Resende, R.O., Boiteux, L.S. 2010. Development of a locus-specific, co-dominant SCAR marker for assisted-selection of the Sw-5 (Tospovirus resistance) gene cluster in a wide range of tomato accessions. Molecular Breeding, 25(1): 133-142.
8. Dorais, M., Papadopoulos, A.P., Gosselin, A. 2001. Greenhouse tomato fruit quality. Horticultural Reviews, 26: 239–319. doi:10.1002/9780470650806.ch5.
9. Doyle, J.J., Doyle, J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19: 11–15.
10. Dyshlyuk, L., Babich, O., Prosekov, A., Ivanova, S., Pavsky, V., Chaplygina, T. 2020. The effect of postharvest ultraviolet irradiation on the content of antioxidant compounds and the activity of antioxidant enzymes in tomato. Heliyon, 6(1): e03288.
11. Ensminger, A. H., Ensminger, M. E., Konlande, J. E. and Robson, J. R. 1995. The concise encyclopedia of foods & nutrition, CRC Press Inc.
12. Etminan, M., Takkouche, B., &Caamaño-Isorna, F. (2004). The role of tomato products and lycopene in the prevention of prostate cancer: a meta-analysis of observational studies. Cancer Epidemiology and Prevention Biomarkers, 13(3): 340-345.
13. FAO 2017. Statistics of Food and Agriculture Organization of the United Nations.
14. Fernández-Ruiz, V., Olives, A. I., Cámara, M., de Cortes Sánchez-Mata, M., &Torija, M. E. (2011). Mineral and trace elements content in 30 accessions of tomato fruits (Solanum lycopersicum L.,) and wild relatives (Solanum pimpinellifolium L., Solanum cheesmaniae L. Riley, and Solanum habrochaites S. Knapp & DM Spooner). Biological trace element research, 141(1): 329-339.
15. Fraga, C.G. 2005. Relevance, essentiality and toxicity of trace elements in human health. Molecular Aspects of Medicine, 26(4–5): 235–244.
16. El Mehrach, K., Mejía, L., Gharsallah-Couchane, S., Salus, M.S., Martin, C.T., Hatimi, A., Vidavski, F., Williamson, V., Maxwell, D.P. 2005. PCR-based methods for tagging the Mi-1 locus for resistance to root-knot nematode in begomovirus-resistant tomato germplasm. Acta Hortic, 695: 263-270.
17. Giovannucci, E. 1999. Tomatoes, tomato-based products, lycopene, and cancer: review of the epidemiologic literature. Journal of The National Cancer Institute, 91(4): 317-331.
18. Guil-Guerrero, J.L., Rebolloso-Fuentes, M.M. 2009. Nutrient composition and antioxidant activity of eight tomato (Lycopersicon esculentum) varieties. Journal of Food Composition and Analysis, 22:123–129.doi:10.1016/j.jfca.2008.10.012
19. Hemming, M.N., Basuki, S., McGrath, D.J., Carroll, B. J., & Jones, D.A. 2004. Fine mapping of the tomato I-3 gene for fusarium wilt resistance and elimination of a co-segregating resistance gene analogue as a candidate for I-3. Theoretical and Applied Genetics, 109(2): 409-418.
20. Ismail, A.S.S., Eissa, A.M., El-Beltagy, A.S., Abou Hadid, A.F. 1996. Iron-zinc and phosphorus relationship in the nutritional status of tomato seedlings grown on sandy soils. Acta Horticulturae 434(434):77-84.
21. Ji, Y., Schuster, D. J., & Scott, J. W. (2007). Ty-3, a begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Molecular Breeding, 20(3): 271-284.
22. Jones, J.B., Jones, J.P., Stall, R.E., Zitter, T.A. 1991. Compendium of tomato diseases. The American Phytopathological Society.
23. Kacar, B. 1972. Chemical Analyses of Plant and Soil, Ankara University Agriculture Faculty 453, Ankara, Turkey.
24. Kacar, B., Kovancı, Đ. 1982. The Analysis of Phosphorus in Plant, Soil and Fertilizers. Ege University Faculty of Agriculture, 354.
25. Kacar, B., Inal, A. 2008. Plant analysis. Nobel Press 1241.
26. Keleş, D., Ozgen, S., Saracoglu, O., Ata, A., Ozgen, M. 2016. Antioxidant potential of Turkish pepper (Capsicum annuum L.) genotypes at two different maturity stages. Turkish Journal of Agriculture and Forestry, 40(4): 542-551.
27. Leung, F.Y. 1998. Trace elements that act as antioxidants in parenteral micronutrition. TheJournal of Nutritional Biochemistry, 9(6): 304-307.
28. Mengel, K., Kirkby, E.A., Kosegarten, H., Appel, T. 2001. Principles of Plant Nutrition. 5th edition, Kluwer Academic Pusblishers, 1-849.
29. Mertz, W. 1982. Trace minerals and atherosclerosis. Federation Proceedings, 41: 2807–2812.
30. Moraghan, J.T., Mascagni, H.J. 1991. Environmental and soil factors affecting micronutrient deficiencies and toxicities. In Micronutrients in Agriculture (eds. J.J. Mortvedt, F.R. Cox, L.M. Shuman, R.M. Welch), SSSA Book Series No:4, Madison, Wisconsin, USA, 371-425.
31. Mutlu, N., Demirelli, A., Ilbi, H.,Ikten, C. 2015. Development of co-dominant SCAR markers linked to resistant gene against the Fusarium oxysporum f. sp. radicis-lycopersici. Theoretical and applied genetics, 128(9): 1791-1798.
32. Pandey, D. K., Shekelle, R., Selwyn, B. J., Tangney, C., Stamler, J. 1995. Dietary vitamin C and β-carotene and risk of death in middle-aged men: the Western Electric study. American journal of epidemiology, 142(12): 1269-1278.
33. Peralta, I.E., Spooner, D.M., Razdan, M. K., Mattoo, A.K. 2006. History, origin and early cultivation of tomato (Solanaceae).Genetic improvement of solanaceous crops, 2: 1-27.
34. Perrier, X., Jacquemoud-Collet, J.P. 2006. DARwin software.https://darwin.cirad.fr/
35. Sainju, U. M., Dris, R., Singh, B. 2003. Mineral nutrition of tomato. Food, Agriculture & Environment, 1(2): 176-183.
36. Sarker, U., Islam, M. T., Rabbani, M. G., Oba, S. 2014. Genotypic variability for nutrient, antioxidant, yield and yield contributing traits in vegetable amaranth. J. Food Agri. Environ, 12: 168-174.
37. Sarker, U., Islam, T., Rabbani, G., Oba, S. 2015. Genotype variability in composition of antioxidant vitamins and minerals in vegetable amaranth. Genetika, 47(1): 85-96.
38. Staniaszek, M., Kozik, E. U., Marczewski, W. 2007. A CAPS marker TAO1902 diagnostic for the I‐2 gene conferring resistance to Fusarium oxysporum f. sp. lycopersici race 2 in tomato. Plant Breeding, 126(3): 331-333.
39. Suárez, M.H., Rodríguez, E.R., Romero, C.D. 2007. Mineral and trace element concentrations in cultivars of tomatoes. Food Chemistry, 104(2): 489-499.
40. Toor, R.K., Savage, G.P., Heeb A., 2006. Influence of different types of fertilisers on the major antioxidant components of tomatoes. Journal of Food Composition and Analysis, 19(1): 20-27.
41. Top, O., Bar, C., Ökmen, B., Özer, D. Y., Rusçuklu, D., Tamer, N., Doğanlar, S. 2014. Exploration of three Solanum species for improvement of antioxidant traits in tomato. HortScience, 49(8): 1003-1009.
42. UPOV 2015. International :union: for the protection of new varieties of plants.
43. Violeta, N.O.U.R., Trandafir, I., Ionica, M.E. 2013. Antioxidant compounds, mineral content and antioxidant activity of several tomato cultivars grown in south western Romania. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 41(1): 136-142.
44. Yang, W., Francis, D.M. 2005. Marker-assisted selection for combining resistance to bacterial spot and bacterial speck in tomato. Journal of the American Society for Horticultural Science, 130(5): 716-721.