Toxicity of Insecticides against Tomato Leaf Miner, Tuta absoluta, and Its Predators and Determination of Their Residue Dissipation in Tomato Fruits

Document Type : Original Research

Authors
1 Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt.
2 Department of Pesticide Residues and Environmental Pollution, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, Giza, Egypt.
Abstract
Tomatoes are an important vegetable crop in different parts of the world, where they are grown year-round. Currently, the most important problem facing tomato growers in the world is the devastating damage caused by the invasive tomato leaf miner, Tuta absoluta Meyrick (Gelechiidae: Lepidoptera). In this study, the efficacy of three bioinsecticides (Bacillus thuringiensis formulations, spinosad and emamectin benzoate, and two chemical insecticides (indoxacarb and chlorpyrifos) against T. absoluta and their adverse effects on predators were conducted in two different governorates in Egypt, based on recommended doses of the tested insecticides. In addition, the residue dissipation of the tested insecticides was determined in tomato fruits. Results indicated that emamectin benzoate was the most effective insecticide, exhibiting the highest reduction in T. absoluta density of 78.05 and 87.11% in Giza and Qualybia governorates, respectively, followed by indoxacarb (77.01%) in Giza and spinosad (80.44%) in Qualybia. In addition, our finding proved that the tested biopesticide formulations, especially Bt formulations, are environmentally friendly to two of the most important predators in tomato cultivation: Nesidiocoris tenuis and Macrolophus pygmaeus Reuter. Moreover, the analysis of insecticide residues on tomato fruits revealed that bioinsecticide residues dissipated faster than conventional insecticide (chlorpyrifos). The results of this research suggested that bioinsecticides could be used for the management of T. absoluta under field conditions.

Keywords

Subjects


Anastassiades, M., Lehotay, S.J., Stajnbaher, D. and Schenck, F.J. 2003. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersivesolid-phase extraction” for the determination of pesticide residues in produce. J. AOAC. Int., 86: 412–431.
Argentine, J.A., Jansson, R.K., Halliday, W.R., Rugg, D. and Jany, C.S. 2002. Potency, spectrum and residual activity of four new insecticides under glass house conditions. Flo. Entomol., 85: 552–562.
Bala, I., Mukhtar, M.M., Saka, H.K., Abdullahi, N. and Ibrahim, S.S. 2019. Determination of insecticide susceptibility of field populations of Tomato leaf miner (Tuta absoluta) in Northern Nigeria. Agriculture, 9: 7.
Bastola, A., Pandey, S.R., Khadka, A. and Regmi, R. 2020. Efficacy of commercial insecticides against Tomato leaf miner Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in Palpa, Nepal. Turkish Journal of Agriculture - Food Sci. and Technol., 8: 2388-2396.
Braham, M. and Hajji, L. 2012. Management of Tuta absoluta (Lepidoptera, Gelechiidae) with insecticides on Tomatoes. Insecti. Pest Engineer., 15: 333–354.
Bratu, E., Petcuci, A.M. and Sovarel, G. 2015. Efficacy of the product Spinosad an insecticide used in the control of Tomato Leaf miner (Tuta absoluta Meyrick, 1917). Bull. UASVM Horticul., 72: 209–210.
Buragohain, P., Saikia, D.K., Sotelo-Cardona, P. and Srinivasan, R. 2021. Evaluation of bio-pesticides against the South American Tomato leaf miner, Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) in India. Horticulture, 7: 325.
Burts, E.C. and Retan, A.H. 1973. Detection of Pear Psylla. Wash. State Univ. Ext. Mimeo. 2: 3069–3073.
Chandler, D., Bailey, A.S., Tatchell, G.M., Davidson, G., Greaves, J. and Grant, W.P. 2011. The development, regulation and use of biopesticides for integrated pest management. Philosophical Transactions of the Royal Society B: Biol. Sci., 366: 1987–1998.
Cisneros, J., Goulson, D., Derwent, L.C., Penagos, D.I., Hernández, O. and Williams, T. 2002. Toxic effects of spinosad on predatory insects. Biol. Cont., 23: 156–163.
Daniel, T.I. and Bajarang, B.S. 2017. Control and management of Tomato leafminer -Tuta absoluta (Meyrick) (Lepidoptera, Gelechiidae). A Review. IOSR J. of Appl. Chemi., 6: 14-22.
Eleonora, A.D. and Vili, B.H. 2014. Efficacy evaluation of insecticides on larvae of the Tomato Borer Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) under laboratory condition, Journal of International Scientific Publications: Agri. and Food., 2: 158-164.
Erasmus, R., van den Berg, J. and du Plessis, H. 2021. Susceptibility of Tuta absoluta (Lepidoptera: Gelechiidae) pupae to soil applied entomopathogenic fungal biopesticides. Insects, 12: 515.
Fantke, P. and Juraske, R. 2013. Variability of pesticide dissipation half-lives in plants. Environ. Sci. Technol., 47: 3548-3562.
Galvan, T.L., Koch, R.L. and Hutchison, W.D. 2005. Toxicity of commonly used insecticides in sweet corn and soybean to multicolored Asian lady beetle (Coleoptera: Coccinellidae). J. Econ. Entomol., 98: 780-789.
Gacemi, A. and Guenaoui, Y. 2012. Efficacy of Emamectin Benzoate on Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) Infesting a Protected Tomato Crop in Algeria. Acad. J. of Entomol., 5: 37-40.
Gacemi, A., Bensaad, R. and Guenaoui, Y. 2016. Effect of Biopesticides Spinosad and Emamectin on Developmental Stages of the Tomato Leafminer Tuta absoluta Meyrick (Lepidoptera: Gelechiidae). Acad. J. of Entomol., 9: 8-13.
Hanafy, E.M.H. and El-Sayed, W. 2013. Efficacy of Bio- and chemical insecticides in the control of Tuta absoluta (Meyrick) and Helicoverpa armigera (Hubner) infesting Tomato Plants. Aust. J. Basic Appl. Sci., 7: 943-948.
Henderson, C.F. and Tilton, E.W. 1955. Tests with acaricides against the brow wheat mite. J. Econ. Entomol., 48: 157-161.
Hoskins, W.M. 1961. Mathematical treatment of loss of pesticide residues. Plant Prot. Bull. (FAO)., 9:163-168.
Insecticide Resistance Action Committee, IRAC. 2020. IRAC mode of action classification, Ver. 9.3, IRAC Mode of Action Working Group. http://www.MoAClassification_v9.4_3March20%20.pdf.
Islam, N.N., Manal, R.M. and Mohamed, F.M. 2009. Residue analysis of difenoconazole, emamectin benzoate and fenazaquin on tomatoes using High Pressure Liquid Chromatography. Alex. Sci. exchang. J., 30: 22-29.
Kandil, M.A., Abdel-kerim, R.N. and Moustafa, M.A.M. 2020. Lethal and sublethal effects of bio-and chemical insecticides on the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Egyptian J. Biol. Pest Cont., 30:1-7
Liguori, R., Cestari P., Serrati, L. and Fusarini, L. 2008. Emamectina benzoato (AFFIRM®): innovative insetticida p,ar la difesa contro I lepidopteri fitofagi. Atti Giornate Fitopatologiche., 23-28.
López, J.D., Latheef, M.A. and Hoffman, W.C. 2010. Effect of emamectin benzoate on mortality, proboscis extension, gustation and reproduction of the corn earworm, Helicoverpa zea. J. Insect Sci., 10: 89.
Madan, A.V.K., Ahlawat, S. and Chauhan, R. 2018. Dissipation pattern and effect of household processing on reduction of indoxacarb residues in tomato fruits (Lycopersicon esculentum Mill.). J. Entomo. Zoo Studies., 6: 814-819.
Miles, M. 2006. The effects of spinosad on beneficial insects and mites used in integrated pest management systems in greenhouses. IOBC/wprs Bull., 29: 53–59.
Mahmoud, M.M., Soliman, A.S.H., Abdel-Moniem, B. and Abdel-Raheem, M.A. 2013. Impact of some insecticides and their mixtures on the population of tomato borers, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) and Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in tomato crop at Upper Egypt. Arch. Phytopathol. Plant Prot., http://dx.doi.org/10.1080/03235408.2013.857226
Moustafa, M.A.M., Fouad, E.A., Abdel-Mobdy, Y., Hamow, K.Á., Mikó, Z., Molnár, B.P. and Fónagy, A. 2021. Toxicity and sublethal effects of chlorantraniliprole and indoxacarb on Spodoptera littoralis (Lepidoptera: Noctuidae). Appl. Entomol. Zool., 1-7.
Moustafa, M.A.M., Saleh, M.A., Ateya, I.R. and Kandil, M.A. 2018. Influence of some environmental conditions on stability and activity of Bacillus thuringiensis formulations against the cotton leaf worm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Egyptian J. Biol. Pest Cont., 28: 1-7.
Moustafa, M.M.A., Vlasák, J. and Sehnal, F. 2013. Activities of modified Cry3A-type toxins on the red flour beetle, Tribolium castaneum (Herbst). J. Appl. Entomol., 137: 684-692.
Orr, N., Shaffner, A.J., Richey, K. and Crouse, G.D. 2009. Novel mode of action of spinosad: Receptor binding studies demonstrating lack of interaction with known insecticidal target sites. Pestic. Biochem. Physiol., 95: 1-5.
Peshin, R. and Zhang, W. 2014. Integrated Pest Management and Pesticide Use. Chapter in Integrated Pest Management Rev., 1-47.
Pigott, C.R. and Ellar, D.J. 2007. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol. Mol. Biol. Rev., 71: 255–281.
Prasannakumar, N.R., Jyothi, N., Saroja, S. and Kumar G.R. 2020. Relative toxicity and insecticide resistance of different field population of tomato leaf miner, Tuta absoluta (Meyrick). International Journal of Tropical Insect Science 1-11.
Roditakis, E. and Seraphides, N. 2011. The current status of Tuta absoluta in Greece and Cyprus, in EPPO/IOBC/ FAO/NEPPO Joint International Symposium on Management of Tuta absoluta. Agadir, Morocco 16. 18 November, 20.
Salgado, V.L. 1998. Studies on the mode of action of spinosad: insect symptoms and physiological correlates. Pestic. Biochem. Physiol., 60: 91-102.
Salgado, V.L. and Sparks, T.C. 2005. The spinosyns: chemistry, biochemistry, mode of action, and resistance. In: Lawrence IG, Kostas I, Sarjeet SG (eds) Comprehensive molecular insect science. Elsevier Amsterdam., 137-173.
Samir, A.M., Ahmed, S., El-Bakary, M., Shawir, S., Gomaa, R. and Ramadan, M. 2015. Efficacy of various insecticides against tomato leaf miner Tuta absoluta in Egypt. Appl. Biol. Res., 17: 297-301.
Santana Jr P.A., Kumar L., Da Silva R.S. and Picanço, M.C. 2019. Global geographic distribution of Tuta absoluta as affected by climate Change. J. Pest Sci., 92: 1373-1385.
Sevcan, O. 2013. Population of Tuta absoluta and natural enemies after releasing on Tomato grown greenhouse in Turkey. Afric. J. Biotechnol., 12: 1882-1887.
Senthil-Nathan, S. 2015. A Review of biopesticides and their mode of action against insect pests. IJAPBC., 1: 508-515.
Soliman, M.M.M. 2012. Performance of certain insecticides and their mixtures against, Tuta absoluta (Meyrick) and Helicoverpa armigera (Hubner) insects on tomato crop at south valley region. J. Plant Prot. and Path. Mansoura Univ., 3: 197 – 209.
Spynu, E.I. 1989. Predicting pesticide residues to reduce crop contamination. Rev. Environ. Contam. Toxicol., 109: 89-107.
Sridhar, V. Onkaranaik, S. and Nitin, K.S. 2016. Efficacy of new molecules of insecticides against South American tomato moth, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Pest Manage. Hortic. Ecosyst., 22: 137-145.
Sterk, G., Hassan, S.A., Baillod, M., Bakker, F., Bigler, F., Blűmel, S., Bogenschűtz, et al. 1999. Results of the seventh joint pesticide testing programme carried out by the IOBC/WPRS-Working Group ‘Pesticides and Beneficial Organisms. Biocont., 44: 99-117.
Sterk, G., Jans, K., Put, K., Wulandari, O.V. and Uyttebroek, M. 2003. Toxicity of chemical and biological plant protection products to beneficial arthropods. In: Roche L, Edin M, Mathieu V, Laurens F (eds) Colloque international tomate sous abri, protection integree agriculture biologique. CITFL, Avignon., 113-118.
Szpyrka, E., Matyaszek, A. and Słowik-Borowiec, M. 2017. Dissipation of chlorantraniliprole, chlorpyrifos-methyl and indoxacarb-insecticides used to control codling moth (Cydia Pomonella L.) and leafrollers (Tortricidae) in apples for production of baby food. Environ. Sci. Pollut. Res., 24: 12128-12135.
Taleh, M., Dastjerdi, H.R., Naseri, B., Garjan, A-S. and Jahromi, K.h-T. 2020. Efficacy of mixture of emamectin benzoate with some insecticides on the mortality and esterase activity of fourth instar larvae of Tuta absoluta (Lepidotera: Gelechiidae). J. Crop Prot., 9: 699-709.
Urvashi, J.G., Sahoo, S.K., Kaur, S., Battu, R.S. and Singh, B. 2012. Estimation of Indoxacarb Residues by QuEChERS Technique and Its Degradation Pattern in Cabbage. Bull. Environ. Contam. Toxicol., 88: 372-376.
Uysal-Pala, C. Bilisli, A. 2006. Fate of endosulfan and deltamethrin residues during tomato paste production. J. Central Eur. Agri., 7: 343–348.
Williams, T., Valle, J. and Vinũela, E. 2003. Is the naturally derived insecticide Spinosad compatible with insect natural enemies?. Biocont. Sci. Technol., 13: 459-475.
Wing, K.D., Sacher, M., Kagaya, Y., Tsurubuchi, Y., Muldirig, L. and Connair, M. 2000. Bioactivation and mode of action of the oxadiazine indoxacarb in insects. Crop Prot., 19: 537-545.
Yoshii, K., Ishimitsu, S., Tonogai, Y., Arakawa, K., Murata, H. Mikami, H. 2004. Simultaneous determination of emamectin, its metabolites, milbemectin, ivermectin and abamectin in tomato, Japanese radish and tea by LC/MS. J. Health Sci., 50: 17-24.