Anastassiades, M., Lehotay, S.J., Stajnbaher, D. and Schenck, F.J. 2003. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersivesolid-phase extraction” for the determination of pesticide residues in produce. J. AOAC. Int., 86: 412–431.
Argentine, J.A., Jansson, R.K., Halliday, W.R., Rugg, D. and Jany, C.S. 2002. Potency, spectrum and residual activity of four new insecticides under glass house conditions. Flo. Entomol., 85: 552–562.
Bala, I., Mukhtar, M.M., Saka, H.K., Abdullahi, N. and Ibrahim, S.S. 2019. Determination of insecticide susceptibility of field populations of Tomato leaf miner (Tuta absoluta) in Northern Nigeria. Agriculture, 9: 7.
Bastola, A., Pandey, S.R., Khadka, A. and Regmi, R. 2020. Efficacy of commercial insecticides against Tomato leaf miner Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in Palpa, Nepal. Turkish Journal of Agriculture - Food Sci. and Technol., 8: 2388-2396.
Braham, M. and Hajji, L. 2012. Management of Tuta absoluta (Lepidoptera, Gelechiidae) with insecticides on Tomatoes. Insecti. Pest Engineer., 15: 333–354.
Bratu, E., Petcuci, A.M. and Sovarel, G. 2015. Efficacy of the product Spinosad an insecticide used in the control of Tomato Leaf miner (Tuta absoluta Meyrick, 1917). Bull. UASVM Horticul., 72: 209–210.
Buragohain, P., Saikia, D.K., Sotelo-Cardona, P. and Srinivasan, R. 2021. Evaluation of bio-pesticides against the South American Tomato leaf miner, Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) in India. Horticulture, 7: 325.
Burts, E.C. and Retan, A.H. 1973. Detection of Pear Psylla. Wash. State Univ. Ext. Mimeo. 2: 3069–3073.
Chandler, D., Bailey, A.S., Tatchell, G.M., Davidson, G., Greaves, J. and Grant, W.P. 2011. The development, regulation and use of biopesticides for integrated pest management. Philosophical Transactions of the Royal Society B: Biol. Sci., 366: 1987–1998.
Cisneros, J., Goulson, D., Derwent, L.C., Penagos, D.I., Hernández, O. and Williams, T. 2002. Toxic effects of spinosad on predatory insects. Biol. Cont., 23: 156–163.
Daniel, T.I. and Bajarang, B.S. 2017. Control and management of Tomato leafminer -Tuta absoluta (Meyrick) (Lepidoptera, Gelechiidae). A Review. IOSR J. of Appl. Chemi., 6: 14-22.
Eleonora, A.D. and Vili, B.H. 2014. Efficacy evaluation of insecticides on larvae of the Tomato Borer Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) under laboratory condition, Journal of International Scientific Publications: Agri. and Food., 2: 158-164.
Erasmus, R., van den Berg, J. and du Plessis, H. 2021. Susceptibility of Tuta absoluta (Lepidoptera: Gelechiidae) pupae to soil applied entomopathogenic fungal biopesticides. Insects, 12: 515.
Fantke, P. and Juraske, R. 2013. Variability of pesticide dissipation half-lives in plants. Environ. Sci. Technol., 47: 3548-3562.
Galvan, T.L., Koch, R.L. and Hutchison, W.D. 2005. Toxicity of commonly used insecticides in sweet corn and soybean to multicolored Asian lady beetle (Coleoptera: Coccinellidae). J. Econ. Entomol., 98: 780-789.
Gacemi, A. and Guenaoui, Y. 2012. Efficacy of Emamectin Benzoate on Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) Infesting a Protected Tomato Crop in Algeria. Acad. J. of Entomol., 5: 37-40.
Gacemi, A., Bensaad, R. and Guenaoui, Y. 2016. Effect of Biopesticides Spinosad and Emamectin on Developmental Stages of the Tomato Leafminer Tuta absoluta Meyrick (Lepidoptera: Gelechiidae). Acad. J. of Entomol., 9: 8-13.
Hanafy, E.M.H. and El-Sayed, W. 2013. Efficacy of Bio- and chemical insecticides in the control of Tuta absoluta (Meyrick) and Helicoverpa armigera (Hubner) infesting Tomato Plants. Aust. J. Basic Appl. Sci., 7: 943-948.
Henderson, C.F. and Tilton, E.W. 1955. Tests with acaricides against the brow wheat mite. J. Econ. Entomol., 48: 157-161.
Hoskins, W.M. 1961. Mathematical treatment of loss of pesticide residues. Plant Prot. Bull. (FAO)., 9:163-168.
Insecticide Resistance Action Committee, IRAC. 2020. IRAC mode of action classification, Ver. 9.3, IRAC Mode of Action Working Group. http://www.MoAClassification_v9.4_3March20%20.pdf.
Islam, N.N., Manal, R.M. and Mohamed, F.M. 2009. Residue analysis of difenoconazole, emamectin benzoate and fenazaquin on tomatoes using High Pressure Liquid Chromatography. Alex. Sci. exchang. J., 30: 22-29.
Kandil, M.A., Abdel-kerim, R.N. and Moustafa, M.A.M. 2020. Lethal and sublethal effects of bio-and chemical insecticides on the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Egyptian J. Biol. Pest Cont., 30:1-7
Liguori, R., Cestari P., Serrati, L. and Fusarini, L. 2008. Emamectina benzoato (AFFIRM®): innovative insetticida p,ar la difesa contro I lepidopteri fitofagi. Atti Giornate Fitopatologiche., 23-28.
López, J.D., Latheef, M.A. and Hoffman, W.C. 2010. Effect of emamectin benzoate on mortality, proboscis extension, gustation and reproduction of the corn earworm, Helicoverpa zea. J. Insect Sci., 10: 89.
Madan, A.V.K., Ahlawat, S. and Chauhan, R. 2018. Dissipation pattern and effect of household processing on reduction of indoxacarb residues in tomato fruits (Lycopersicon esculentum Mill.). J. Entomo. Zoo Studies., 6: 814-819.
Miles, M. 2006. The effects of spinosad on beneficial insects and mites used in integrated pest management systems in greenhouses. IOBC/wprs Bull., 29: 53–59.
Mahmoud, M.M., Soliman, A.S.H., Abdel-Moniem, B. and Abdel-Raheem, M.A. 2013. Impact of some insecticides and their mixtures on the population of tomato borers, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) and Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in tomato crop at Upper Egypt. Arch. Phytopathol. Plant Prot., http://dx.doi.org/10.1080/03235408.2013.857226
Moustafa, M.A.M., Fouad, E.A., Abdel-Mobdy, Y., Hamow, K.Á., Mikó, Z., Molnár, B.P. and Fónagy, A. 2021. Toxicity and sublethal effects of chlorantraniliprole and indoxacarb on Spodoptera littoralis (Lepidoptera: Noctuidae). Appl. Entomol. Zool., 1-7.
Moustafa, M.A.M., Saleh, M.A., Ateya, I.R. and Kandil, M.A. 2018. Influence of some environmental conditions on stability and activity of Bacillus thuringiensis formulations against the cotton leaf worm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Egyptian J. Biol. Pest Cont., 28: 1-7.
Moustafa, M.M.A., Vlasák, J. and Sehnal, F. 2013. Activities of modified Cry3A-type toxins on the red flour beetle, Tribolium castaneum (Herbst). J. Appl. Entomol., 137: 684-692.
Orr, N., Shaffner, A.J., Richey, K. and Crouse, G.D. 2009. Novel mode of action of spinosad: Receptor binding studies demonstrating lack of interaction with known insecticidal target sites. Pestic. Biochem. Physiol., 95: 1-5.
Peshin, R. and Zhang, W. 2014. Integrated Pest Management and Pesticide Use. Chapter in Integrated Pest Management Rev., 1-47.
Pigott, C.R. and Ellar, D.J. 2007. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol. Mol. Biol. Rev., 71: 255–281.
Prasannakumar, N.R., Jyothi, N., Saroja, S. and Kumar G.R. 2020. Relative toxicity and insecticide resistance of different field population of tomato leaf miner, Tuta absoluta (Meyrick). International Journal of Tropical Insect Science 1-11.
Roditakis, E. and Seraphides, N. 2011. The current status of Tuta absoluta in Greece and Cyprus, in EPPO/IOBC/ FAO/NEPPO Joint International Symposium on Management of Tuta absoluta. Agadir, Morocco 16. 18 November, 20.
Salgado, V.L. 1998. Studies on the mode of action of spinosad: insect symptoms and physiological correlates. Pestic. Biochem. Physiol., 60: 91-102.
Salgado, V.L. and Sparks, T.C. 2005. The spinosyns: chemistry, biochemistry, mode of action, and resistance. In: Lawrence IG, Kostas I, Sarjeet SG (eds) Comprehensive molecular insect science. Elsevier Amsterdam., 137-173.
Samir, A.M., Ahmed, S., El-Bakary, M., Shawir, S., Gomaa, R. and Ramadan, M. 2015. Efficacy of various insecticides against tomato leaf miner Tuta absoluta in Egypt. Appl. Biol. Res., 17: 297-301.
Santana Jr P.A., Kumar L., Da Silva R.S. and Picanço, M.C. 2019. Global geographic distribution of Tuta absoluta as affected by climate Change. J. Pest Sci., 92: 1373-1385.
Sevcan, O. 2013. Population of Tuta absoluta and natural enemies after releasing on Tomato grown greenhouse in Turkey. Afric. J. Biotechnol., 12: 1882-1887.
Senthil-Nathan, S. 2015. A Review of biopesticides and their mode of action against insect pests. IJAPBC., 1: 508-515.
Soliman, M.M.M. 2012. Performance of certain insecticides and their mixtures against, Tuta absoluta (Meyrick) and Helicoverpa armigera (Hubner) insects on tomato crop at south valley region. J. Plant Prot. and Path. Mansoura Univ., 3: 197 – 209.
Spynu, E.I. 1989. Predicting pesticide residues to reduce crop contamination. Rev. Environ. Contam. Toxicol., 109: 89-107.
Sridhar, V. Onkaranaik, S. and Nitin, K.S. 2016. Efficacy of new molecules of insecticides against South American tomato moth, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Pest Manage. Hortic. Ecosyst., 22: 137-145.
Sterk, G., Hassan, S.A., Baillod, M., Bakker, F., Bigler, F., Blűmel, S., Bogenschűtz, et al. 1999. Results of the seventh joint pesticide testing programme carried out by the IOBC/WPRS-Working Group ‘Pesticides and Beneficial Organisms. Biocont., 44: 99-117.
Sterk, G., Jans, K., Put, K., Wulandari, O.V. and Uyttebroek, M. 2003. Toxicity of chemical and biological plant protection products to beneficial arthropods. In: Roche L, Edin M, Mathieu V, Laurens F (eds) Colloque international tomate sous abri, protection integree agriculture biologique. CITFL, Avignon., 113-118.
Szpyrka, E., Matyaszek, A. and Słowik-Borowiec, M. 2017. Dissipation of chlorantraniliprole, chlorpyrifos-methyl and indoxacarb-insecticides used to control codling moth (Cydia Pomonella L.) and leafrollers (Tortricidae) in apples for production of baby food. Environ. Sci. Pollut. Res., 24: 12128-12135.
Taleh, M., Dastjerdi, H.R., Naseri, B., Garjan, A-S. and Jahromi, K.h-T. 2020. Efficacy of mixture of emamectin benzoate with some insecticides on the mortality and esterase activity of fourth instar larvae of Tuta absoluta (Lepidotera: Gelechiidae). J. Crop Prot., 9: 699-709.
Urvashi, J.G., Sahoo, S.K., Kaur, S., Battu, R.S. and Singh, B. 2012. Estimation of Indoxacarb Residues by QuEChERS Technique and Its Degradation Pattern in Cabbage. Bull. Environ. Contam. Toxicol., 88: 372-376.
Uysal-Pala, C. Bilisli, A. 2006. Fate of endosulfan and deltamethrin residues during tomato paste production. J. Central Eur. Agri., 7: 343–348.
Williams, T., Valle, J. and Vinũela, E. 2003. Is the naturally derived insecticide Spinosad compatible with insect natural enemies?. Biocont. Sci. Technol., 13: 459-475.
Wing, K.D., Sacher, M., Kagaya, Y., Tsurubuchi, Y., Muldirig, L. and Connair, M. 2000. Bioactivation and mode of action of the oxadiazine indoxacarb in insects. Crop Prot., 19: 537-545.
Yoshii, K., Ishimitsu, S., Tonogai, Y., Arakawa, K., Murata, H. Mikami, H. 2004. Simultaneous determination of emamectin, its metabolites, milbemectin, ivermectin and abamectin in tomato, Japanese radish and tea by LC/MS. J. Health Sci., 50: 17-24.