1. Blok, P. M., Barth, R., & Van Den Berg, W., 2016. Machine vision for a selective broccoli harvesting robot. IFAC-PapersOnLine. 49(16), 66-71.
2. Dong, F., Heinemann, W., & Kasper, R., 2011. Development of a row guidance system for an autonomous robot for white asparagus harvesting. Computers and Electronics in Agriculture, 79(2), 216-225.
3. Du, D., Wang, J., Xie, L., & Deng, F., 2019. Design and field test of a new compact self-propelled cabbage harvester. Transactions of the ASABE, 62(5), 1243-1250.
4. Foglia, M. M., & Reina, G., 2006. Agricultural robot for radicchio harvesting. Journal of Field Robotics, 23(6‐7), 363-377.
5. Fu, W., Zhang, Z., Ding, K., Cao, W., Kan, Z., Pan, J., & Liu, Y., 2018. Design and test of 4ZZ-4A2 full-hydraulic self-propelled jujube harvester. International Journal of Agricultural and Biological Engineering, 11(4), 104-110.
6. García-Manso, A., Gallardo-Caballero, R., García-Orellana, C. J., González-Velasco, H. M., & Macías-Macías, M., 2021. Towards selective and automatic harvesting of broccoli for agri-food industry. Computers and Electronics in Agriculture, 188, 106263.
7. Glancey, J. L., & Kee, W. E., 2005. Engineering aspects of production and harvest mechanization for fresh and processed vegetables. HortTechnology, 15(1), 76-79.
8. Gonzalez-de-Santos, P., Fernández, R., Sepúlveda, D., Navas, E., Emmi, L., & Armada, M., 2020. Field robots for intelligent farms—inhering features from industry. Agronomy, 10(11), 1638.
9. Leu, A., Razavi, M., Langstädtler, L., Ristić-Durrant, D., Raffel, H., Schenck, C., ... & Kuhfuss, B., 2017. Robotic green asparagus selective harvesting. IEEE/ASME Transactions on Mechatronics, 22(6), 2401-2410.
10. Li, B., Gu, S., Chu, Q., Yang, Y., Xie, Z., Fan, K., & Liu, X., 2019. Development of transplanting manipulator for hydroponic leafy vegetables. International Journal of Agricultural and Biological Engineering, 12(6), 38-44.
11. Li, Y., Tao, C., Zhe, Q., Kehong, L., Xiaowei, Y., Dandan, H., & Dongxing, Z., 2016. Development and application of mechanized maize harvesters. International Journal of Agricultural and Biological Engineering, 9(3), 15-28.
12. Liu, Y. Y., & Yu, H., 2018. Research and development in agricultural robotics: a perspective of digital farming. Science of The Total Environment. 11(4),1-14.
13. Milella, A., Reina, G., & Foglia, M., 2006. Computer vision technology for agricultural robotics. Sensor Review. Sensor Review. 26(4), 290-300.
14. Na, Z., & Pan, Y. H., 2020. A research on the classification of intelligence level of unmanned grain harvester. Journal of the Korea Convergence Society, 11(5), 165-173.
15. Qiao, F., 2017. Increasing wage, mechanization, and agriculture production in China. China Economic Review, 46, 249-260.
16. Sharma, A., Jain, A., Gupta, P., & Chowdary, V., 2020. Machine learning applications for precision agriculture: A comprehensive review. IEEE Access, 9, 4843-4873.
17. Xu, Y., Zhang, B., & Zhang, L., 2018. A technical efficiency evaluation system for vegetable production in China. Information Processing in Agriculture, 5(3), 345-353.
18. Zhang, T., Huang, Z., You, W., Lin, J., Tang, X., & Huang, H., 2020. An autonomous fruit and vegetable harvester with a low-cost gripper using a 3D sensor. Sensors, 20(1), 93.
19. Zhang, X. R., Wu, P., Wang, K. H., Li, Y., Shang, S., & Zhang, X., 2019. Design and experiment of 4YZT-2 type self-propelled fresh corn double ridges harvester. Transactions of the Chinese Society for Agricultural Machinery, 35(13), 1-9.
20. Zhou, C., Luan, F., Fang, X., & Chen, H., 2017. Design of cabbage pulling-out test bed and parameter optimization test. Chemical Engineering Transactions, 62, 1267-1272.
21. Zhou, J. H., Han, F., Kai, L. I., & Wang, Y., 2020. Vegetable production under COVID-19 pandemic in China: An analysis based on the data of 526 households. Journal of Integrative Agriculture, 19(12), 2854-2865.