Role of AGAMOUS Gene in Increasing Tepals of Amaryllis

Document Type : Original Research

Authors
1 Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Islamic Republic of Iran.
2 Academic Center for Education, Culture and Research, Khorasan Razavi Branch, Mashhad, Islamic Republic of Iran.
Abstract
MADS-box genes play important roles in the regulation of floral organ development. In this gene family, AGAMOUS genes are responsible for stamen and carpel development. In the double-flowered form of Amaryllis, compared to its wild type, the stamen number is reduced to three, there is no pistil, and, in contrast, tepal numbers have increased. In this investigation, we examined the AGAMOUS (AG) gene function in these alterations. Therefore, we isolated one AGAMOUS coding sequence named AmAG. Then, the expression level of this gene in the wild form and double-flowered Amaryllis was evaluated using quantitative real-time PCR. The phylogenetic results showed that the partial AmAG gene has high homology with the sequences of AGAMOUS ortholog genes in the Amaryllidaceae family and plants close to this family. Also, there were no differences in the sequence of partial AmAG genes in wild and double-flowered forms. Real-time PCR revealed that, in wild form, AmAG gene expression was low in the first to third whorl and high only in the fourth whorl. While in double flowered form, AmAG gene expression in four whorls was low. The lower expression of AmAG in the fourth whorl of double-flowered form had caused such morphological alterations, the reasons for which should be determined in other experiments.

Keywords

Subjects


References
Akita, Y., Horikawa, Y., & Kanno, A. (2008). Comparative analysis of floral MADS-box genes between wild-type and a putative homeotic mutant in lily. J. Hortic. Sci. Biotechnol., 83(4), 453-461.
Akita, Y., Nakada, M., & Kanno, A. (2011). Effect of the expression level of an AGAMOUS-like gene on the petaloidy of stamens in the double-flowered lily,‘Elodie’. Sci. Hortic., 128(1), 48-53.
Bell, W. D. (1977). Double flowered Amaryllis [Breeding]. Proceedings of the Florida State Horticultural Society.
Bowman, J. L., Smyth, D. R., & Meyerowitz, E. M. (1989). Genes directing flower development in Arabidopsis. The Plant Cell, 1(1), 37-52.
Bradley, D., Carpenter, R., Sommer, H., Hartley, N., & Coen, E. (1993). Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell, 72(1), 85-95.
Chang, A. Y., Chau, V., Landas, J. A., & Pang, Y. (2017). Preparation of calcium competent Escherichia coli and heat-shock transformation. JEMI Methods, 1, 22-25.
Chen, Y.-Y., Lee, P.-F., Hsiao, Y.-Y., Wu, W.-L., Pan, Z.-J., Lee, Y.-I., . . . Tsai, W.-C. (2012). C-and D-class MADS-box genes from Phalaenopsis equestris (Orchidaceae) display functions in gynostemium and ovule development. Plant Cell Physiol. 53(6), 1053-1067.
Davies, B., Motte, P., Keck, E., Saedler, H., Sommer, H., & Schwarz‐Sommer, Z. (1999). PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS‐box factors controlling flower development. The EMBO J., 18(14), 4023-4034.
Dubois, A., Raymond, O., Maene, M., Baudino, S., Langlade, N. B., Boltz, V., . . . Bendahmane, M. (2010). Tinkering with the C-function: a molecular frame for the selection of double flowers in cultivated roses. PLoS One, 5(2), e9288.
Fornara, F., de Montaigu, A., & Coupland, G. (2010). SnapShot: control of flowering in Arabidopsis. Cell, 141(3), 550-550. e552.
François, L., Verdenaud, M., Fu, X., Ruleman, D., Dubois, A., Vandenbussche, M., . . . Bendahmane, M. (2018). A miR172 target-deficient AP2-like gene correlates with the double flower phenotype in roses. Sci. Rep., 8(1), 1-11.
Galimba, K. D., Tolkin, T. R., Sullivan, A. M., Melzer, R., Theißen, G., & Di Stilio, V. S. (2012). Loss of deeply conserved C-class floral homeotic gene function and C-and E-class protein interaction in a double-flowered ranunculid mutant. Proceedings of the National Academy of Sciences, 109(34), E2267-E2275.
Gattolin, S., Cirilli, M., Pacheco, I., Ciacciulli, A., Da Silva Linge, C., Mauroux, J. B., . . . Pascal, T. (2018). Deletion of the miR172 target site in a TOE‐type gene is a strong candidate variant for dominant double‐flower trait in Rosaceae. Plant J., 96(2), 358-371.
Heijmans, K., Morel, P., & Vandenbussche, M. (2012). MADS-box genes and floral development: the dark side. J. Exp. Bot., 63(15), 5397-5404.
Klocko, A. L., Borejsza-Wysocka, E., Brunner, A. M., Shevchenko, O., Aldwinckle, H., & Strauss, S. H. (2016). Transgenic suppression of AGAMOUS genes in apple reduces fertility and increases floral attractiveness. PLoS One, 11(8), e0159421.
Liu, M.-C., & Yeh, D.-M. (2015). ‘TSS No. 1-Pink Pearl’: A Double-Flowered and Fragrant Amaryllis Cultivar. Hort. Sci., 50(10), 1588-1590.
Liu, Z., Zhang, D., Liu, D., Li, F., & Lu, H. (2013). Exon skipping of AGAMOUS homolog PrseAG in developing double flowers of Prunus lannesiana (Rosaceae). Plant Cell Rep., 32(2), 227-237.
Ma, N., Chen, W., Fan, T., Tian, Y., Zhang, S., Zeng, D., & Li, Y. (2015). Low temperature-induced DNA hypermethylation attenuates expression of RhAG, an AGAMOUS homolog, and increases petal number in rose (Rosa hybrida). BMC Plant Biol., 15(1), 1-13.
Matsoukas, I. G., Massiah, A. J., & Thomas, B. (2012). Florigenic and antiflorigenic signaling in plants. Plant Cell Physiol., 53(11), 1827-1842.
McCann, J. (1937). New double hybrid amaryllis. Herbertia, 4, 185-186.
Mizukami, Y., & Ma, H. (1995). Separation of AG function in floral meristem determinacy from that in reproductive organ identity by expressing antisense AG RNA. Plant Mol. Biol., 28(5), 767-784.
Ng, M., & Yanofsky, M. F. (2001). Function and evolution of the plant MADS-box gene family. Nat. Rev. Genet., 2(3), 186-195.
Nitasaka, E. (2003). Insertion of an En/Spm‐related transposable element into a floral homeotic gene DUPLICATED causes a double flower phenotype in the Japanese morning glory. Plant J. 36(4), 522-531.
Noor, S. H., Ushijima, K., Murata, A., Yoshida, K., Tanabe, M., Tanigawa, T., . . . Nakano, R. (2014). Double flower formation induced by silencing of C-class MADS-box genes and its variation among petunia cultivars. Sci. Hortic., 178, 1-7.
Ó’Maoiléidigh, D. S., Wuest, S. E., Rae, L., Raganelli, A., Ryan, P. T., Kwaśniewska, K., . . . Graciet, E. (2013). Control of reproductive floral organ identity specification in Arabidopsis by the C function regulator AGAMOUS. The Plant Cell, 25(7), 2482-2503.
Pelaz, S., Ditta, G. S., Baumann, E., Wisman, E., & Yanofsky, M. F. (2000). B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 405(6783), 200-203.
Salamah, A., & Rostina, I. (2019). Analysis of AGAMOUS Gene Expression in Hibiscus rosasinensis L. Single Pink, Crested Peach, and Double Orange Flowers. J. Physics: Conference Series.
Sandoval, S. d. C. D., Juárez, M. J. A., & Simpson, J. (2012). Agave tequilana MADS genes show novel expression patterns in meristems, developing bulbils and floral organs. Sex. Plant Reprod., 25(1), 11-26.
Sharifi, A., Oizumi, K., Kubota, S., Bagheri, A., Shafaroudi, S. M., Nakano, M., & Kanno, A. (2015). Double flower formation in Tricyrtis macranthopsis is related to low expression of AGAMOUS ortholog gene. Sci. Hortic. 193, 337-345.
Sieburth, L. E., Running, M. P., & Meyerowitz, E. M. (1995). Genetic separation of third and fourth whorl functions of AGAMOUS. The Plant Cell, 7(8), 1249-1258.
Soltis, D. E., Chanderbali, A. S., Kim, S., Buzgo, M., & Soltis, P. S. (2007). The ABC model and its applicability to basal angiosperms. Ann. Bot. 100(2), 155-163.
Srikanth, A., & Schmid, M. (2011). Regulation of flowering time: all roads lead to Rome. Cell. Mol. Life Sci., 68(12), 2013-2037.
Tanaka, Y., Oshima, Y., Yamamura, T., Sugiyama, M., Mitsuda, N., Ohtsubo, N., . . . Terakawa, T. (2013). Multi-petal cyclamen flowers produced by AGAMOUS chimeric repressor expression. Sci, 3, 1-6.
Theißen, G. (2001). Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol., 4(1), 75-85.
Theißen, G., Melzer, R., & Rümpler, F. (2016). MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Dev., 143(18), 3259-3271.
Wang, S.-Y., Lee, P.-F., Lee, Y.-I., Hsiao, Y.-Y., Chen, Y.-Y., Pan, Z.-J., . . . Tsai, W.-C. (2011). Duplicated C-class MADS-box genes reveal distinct roles in gynostemium development in Cymbidium ensifolium (Orchidaceae). Plant Cell Physiol., 52(3), 563-577.
Wang, Y., Chen, D., He, X., Shen, J., Xiong, M., Wang, X., . . . Wei, Z. (2018). Revealing the complex genetic structure of cultivated amaryllis (Hippeastrum hybridum) using transcriptome-derived microsatellite markers. Sci. Rep., 8(1), 1-12.
Waters, M. T., Tiley, A. M., Kramer, E. M., Meerow, A. W., Langdale, J. A., & Scotland, R. W. (2013). The corona of the daffodil Narcissus bulbocodium shares stamen‐like identity and is distinct from the orthodox floral whorls. Plant J. 74(4), 615-625.
Weigel, D., & Meyerowitz, E. M. (1994). The ABCs of floral homeotic genes. Cell, 78(2), 203-209.
Xu, Y., Teo, L. L., Zhou, J., Kumar, P. P., & Yu, H. (2006). Floral organ identity genes in the orchid Dendrobium crumenatum. Plant J. 46(1), 54-68.
Ye, L., & Shi, Y. (2008). Research on pollen germination and pollen preservation characteristic of Hippeastrum. J. Shanghai Jiaotong University (Agricultural Science), 1(3).
Yu, D., Kotilainen, M., Pöllänen, E., Mehto, M., Elomaa, P., Helariutta, Y., . . . Teeri, T. H. (1999). Organ identity genes and modified patterns of flower development in Gerbera hybrida (Asteraceae). Plant J., 17(1), 51-62.
Yun, P.-Y., Ito, T., Kim, S.-Y., Kanno, A., & Kameya, T. (2004). The AVAG1 gene is involved in development of reproductive organs in the ornamental asparagus, Asparagus virgatus. Sex. Plant Reprod., 17(1), 1-8.
Zahn, L. M., Leebens-Mack, J., DePamphilis, C., Ma, H., & Theissen, G. (2005). To B or not to B a flower: the role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms. J. Hered., 96(3), 225-240.
Zhang, B., Liu, Z.-x., Ma, J., Song, Y., & Chen, F.-j. (2015). Alternative splicing of the AGAMOUS orthologous gene in double flower of Magnolia stellata (Magnoliaceae). Plant Sci., 241, 277-285.
Zhu, B., Li, H., Wen, J., Mysore, K. S., Wang, X., Pei, Y., . . . Lin, H. (2018). Functional specialization of duplicated AGAMOUS homologs in regulating floral organ development of Medicago truncatula. Front. Plant Sci., 9, 854.