References
Akita, Y., Horikawa, Y., & Kanno, A. (2008). Comparative analysis of floral MADS-box genes between wild-type and a putative homeotic mutant in lily. J. Hortic. Sci. Biotechnol., 83(4), 453-461.
Akita, Y., Nakada, M., & Kanno, A. (2011). Effect of the expression level of an AGAMOUS-like gene on the petaloidy of stamens in the double-flowered lily,‘Elodie’. Sci. Hortic., 128(1), 48-53.
Bell, W. D. (1977). Double flowered Amaryllis [Breeding]. Proceedings of the Florida State Horticultural Society.
Bowman, J. L., Smyth, D. R., & Meyerowitz, E. M. (1989). Genes directing flower development in Arabidopsis. The Plant Cell, 1(1), 37-52.
Bradley, D., Carpenter, R., Sommer, H., Hartley, N., & Coen, E. (1993). Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell, 72(1), 85-95.
Chang, A. Y., Chau, V., Landas, J. A., & Pang, Y. (2017). Preparation of calcium competent Escherichia coli and heat-shock transformation. JEMI Methods, 1, 22-25.
Chen, Y.-Y., Lee, P.-F., Hsiao, Y.-Y., Wu, W.-L., Pan, Z.-J., Lee, Y.-I., . . . Tsai, W.-C. (2012). C-and D-class MADS-box genes from Phalaenopsis equestris (Orchidaceae) display functions in gynostemium and ovule development. Plant Cell Physiol. 53(6), 1053-1067.
Davies, B., Motte, P., Keck, E., Saedler, H., Sommer, H., & Schwarz‐Sommer, Z. (1999). PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS‐box factors controlling flower development. The EMBO J., 18(14), 4023-4034.
Dubois, A., Raymond, O., Maene, M., Baudino, S., Langlade, N. B., Boltz, V., . . . Bendahmane, M. (2010). Tinkering with the C-function: a molecular frame for the selection of double flowers in cultivated roses. PLoS One, 5(2), e9288.
Fornara, F., de Montaigu, A., & Coupland, G. (2010). SnapShot: control of flowering in Arabidopsis. Cell, 141(3), 550-550. e552.
François, L., Verdenaud, M., Fu, X., Ruleman, D., Dubois, A., Vandenbussche, M., . . . Bendahmane, M. (2018). A miR172 target-deficient AP2-like gene correlates with the double flower phenotype in roses. Sci. Rep., 8(1), 1-11.
Galimba, K. D., Tolkin, T. R., Sullivan, A. M., Melzer, R., Theißen, G., & Di Stilio, V. S. (2012). Loss of deeply conserved C-class floral homeotic gene function and C-and E-class protein interaction in a double-flowered ranunculid mutant. Proceedings of the National Academy of Sciences, 109(34), E2267-E2275.
Gattolin, S., Cirilli, M., Pacheco, I., Ciacciulli, A., Da Silva Linge, C., Mauroux, J. B., . . . Pascal, T. (2018). Deletion of the miR172 target site in a TOE‐type gene is a strong candidate variant for dominant double‐flower trait in Rosaceae. Plant J., 96(2), 358-371.
Heijmans, K., Morel, P., & Vandenbussche, M. (2012). MADS-box genes and floral development: the dark side. J. Exp. Bot., 63(15), 5397-5404.
Klocko, A. L., Borejsza-Wysocka, E., Brunner, A. M., Shevchenko, O., Aldwinckle, H., & Strauss, S. H. (2016). Transgenic suppression of AGAMOUS genes in apple reduces fertility and increases floral attractiveness. PLoS One, 11(8), e0159421.
Liu, M.-C., & Yeh, D.-M. (2015). ‘TSS No. 1-Pink Pearl’: A Double-Flowered and Fragrant Amaryllis Cultivar. Hort. Sci., 50(10), 1588-1590.
Liu, Z., Zhang, D., Liu, D., Li, F., & Lu, H. (2013). Exon skipping of AGAMOUS homolog PrseAG in developing double flowers of Prunus lannesiana (Rosaceae). Plant Cell Rep., 32(2), 227-237.
Ma, N., Chen, W., Fan, T., Tian, Y., Zhang, S., Zeng, D., & Li, Y. (2015). Low temperature-induced DNA hypermethylation attenuates expression of RhAG, an AGAMOUS homolog, and increases petal number in rose (Rosa hybrida). BMC Plant Biol., 15(1), 1-13.
Matsoukas, I. G., Massiah, A. J., & Thomas, B. (2012). Florigenic and antiflorigenic signaling in plants. Plant Cell Physiol., 53(11), 1827-1842.
McCann, J. (1937). New double hybrid amaryllis. Herbertia, 4, 185-186.
Mizukami, Y., & Ma, H. (1995). Separation of AG function in floral meristem determinacy from that in reproductive organ identity by expressing antisense AG RNA. Plant Mol. Biol., 28(5), 767-784.
Ng, M., & Yanofsky, M. F. (2001). Function and evolution of the plant MADS-box gene family. Nat. Rev. Genet., 2(3), 186-195.
Nitasaka, E. (2003). Insertion of an En/Spm‐related transposable element into a floral homeotic gene DUPLICATED causes a double flower phenotype in the Japanese morning glory. Plant J. 36(4), 522-531.
Noor, S. H., Ushijima, K., Murata, A., Yoshida, K., Tanabe, M., Tanigawa, T., . . . Nakano, R. (2014). Double flower formation induced by silencing of C-class MADS-box genes and its variation among petunia cultivars. Sci. Hortic., 178, 1-7.
Ó’Maoiléidigh, D. S., Wuest, S. E., Rae, L., Raganelli, A., Ryan, P. T., Kwaśniewska, K., . . . Graciet, E. (2013). Control of reproductive floral organ identity specification in Arabidopsis by the C function regulator AGAMOUS. The Plant Cell, 25(7), 2482-2503.
Pelaz, S., Ditta, G. S., Baumann, E., Wisman, E., & Yanofsky, M. F. (2000). B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 405(6783), 200-203.
Salamah, A., & Rostina, I. (2019). Analysis of AGAMOUS Gene Expression in Hibiscus rosasinensis L. Single Pink, Crested Peach, and Double Orange Flowers. J. Physics: Conference Series.
Sandoval, S. d. C. D., Juárez, M. J. A., & Simpson, J. (2012). Agave tequilana MADS genes show novel expression patterns in meristems, developing bulbils and floral organs. Sex. Plant Reprod., 25(1), 11-26.
Sharifi, A., Oizumi, K., Kubota, S., Bagheri, A., Shafaroudi, S. M., Nakano, M., & Kanno, A. (2015). Double flower formation in Tricyrtis macranthopsis is related to low expression of AGAMOUS ortholog gene. Sci. Hortic. 193, 337-345.
Sieburth, L. E., Running, M. P., & Meyerowitz, E. M. (1995). Genetic separation of third and fourth whorl functions of AGAMOUS. The Plant Cell, 7(8), 1249-1258.
Soltis, D. E., Chanderbali, A. S., Kim, S., Buzgo, M., & Soltis, P. S. (2007). The ABC model and its applicability to basal angiosperms. Ann. Bot. 100(2), 155-163.
Srikanth, A., & Schmid, M. (2011). Regulation of flowering time: all roads lead to Rome. Cell. Mol. Life Sci., 68(12), 2013-2037.
Tanaka, Y., Oshima, Y., Yamamura, T., Sugiyama, M., Mitsuda, N., Ohtsubo, N., . . . Terakawa, T. (2013). Multi-petal cyclamen flowers produced by AGAMOUS chimeric repressor expression. Sci, 3, 1-6.
Theißen, G. (2001). Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol., 4(1), 75-85.
Theißen, G., Melzer, R., & Rümpler, F. (2016). MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Dev., 143(18), 3259-3271.
Wang, S.-Y., Lee, P.-F., Lee, Y.-I., Hsiao, Y.-Y., Chen, Y.-Y., Pan, Z.-J., . . . Tsai, W.-C. (2011). Duplicated C-class MADS-box genes reveal distinct roles in gynostemium development in Cymbidium ensifolium (Orchidaceae). Plant Cell Physiol., 52(3), 563-577.
Wang, Y., Chen, D., He, X., Shen, J., Xiong, M., Wang, X., . . . Wei, Z. (2018). Revealing the complex genetic structure of cultivated amaryllis (Hippeastrum hybridum) using transcriptome-derived microsatellite markers. Sci. Rep., 8(1), 1-12.
Waters, M. T., Tiley, A. M., Kramer, E. M., Meerow, A. W., Langdale, J. A., & Scotland, R. W. (2013). The corona of the daffodil Narcissus bulbocodium shares stamen‐like identity and is distinct from the orthodox floral whorls. Plant J. 74(4), 615-625.
Weigel, D., & Meyerowitz, E. M. (1994). The ABCs of floral homeotic genes. Cell, 78(2), 203-209.
Xu, Y., Teo, L. L., Zhou, J., Kumar, P. P., & Yu, H. (2006). Floral organ identity genes in the orchid Dendrobium crumenatum. Plant J. 46(1), 54-68.
Ye, L., & Shi, Y. (2008). Research on pollen germination and pollen preservation characteristic of Hippeastrum. J. Shanghai Jiaotong University (Agricultural Science), 1(3).
Yu, D., Kotilainen, M., Pöllänen, E., Mehto, M., Elomaa, P., Helariutta, Y., . . . Teeri, T. H. (1999). Organ identity genes and modified patterns of flower development in Gerbera hybrida (Asteraceae). Plant J., 17(1), 51-62.
Yun, P.-Y., Ito, T., Kim, S.-Y., Kanno, A., & Kameya, T. (2004). The AVAG1 gene is involved in development of reproductive organs in the ornamental asparagus, Asparagus virgatus. Sex. Plant Reprod., 17(1), 1-8.
Zahn, L. M., Leebens-Mack, J., DePamphilis, C., Ma, H., & Theissen, G. (2005). To B or not to B a flower: the role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms. J. Hered., 96(3), 225-240.
Zhang, B., Liu, Z.-x., Ma, J., Song, Y., & Chen, F.-j. (2015). Alternative splicing of the AGAMOUS orthologous gene in double flower of Magnolia stellata (Magnoliaceae). Plant Sci., 241, 277-285.
Zhu, B., Li, H., Wen, J., Mysore, K. S., Wang, X., Pei, Y., . . . Lin, H. (2018). Functional specialization of duplicated AGAMOUS homologs in regulating floral organ development of Medicago truncatula. Front. Plant Sci., 9, 854.