Response of Saffron Ecotypes to Growing Season: Growth Analysis, Plant Nutrition, and Dry Matter Production

Document Type : Original Research

Authors
Department of Agronomy and Plant Breeding, Shahid Bahonar University, P. O. Box: 76169-133, Kerman, Islamic Republic of Iran.
Abstract
Development of saffron corm resources with higher ability to acquire nutrients and produce more dry matter may offer one solution to mitigate the yield loss problem in growing areas. In the present study, variability in growth, nutrition, and biomass production among saffron ecotypes grown for a two-year field experiment was investigated at Kerman, a semi-arid region of Iran, during the 2015-2016 and 2016-2017 growing seasons. The results indicated that the studied ecotypes significantly differed in the mentioned parameters and responded differently to growing seasons. High-agronomic performance (yield) and nutrient-efficient ecotypes, e.g. Ferdows, Sarayan, and Bajestan, accumulated more nutrients as a result of increased Relative Growth Rate (RGR) and Net Assimilation Rate (NAR) before the critical stage, resulting in higher dry matter production. In contrast, ecotypes with lower potential to acquire nutrients, e.g. Zarand and Torbat, had lower growth and dry matter. Further, the results showed that variation in nitrogen (N) concentration in corms and leaves was not significant, although significant variation existed in N uptake, N uptake efficiency, and N use efficiency. This can be due to variation observed in the ability of corms to utilize nutrients for dry matter production. Cluster analysis revealed the presence of highly efficient, moderately efficient, and inefficient ecotypes. Generally, the results indicated that ecotypes with higher growth rate before critical stage showed more potential to uptake and utilize nutrients to produce more dry matter, and exhibited more nutrients use efficiencies. Overall, this study suggested that the nutrient acquisition capacity of ecotypes, a desired feature associated with higher biomass production, can be an important factor in selection programs.

Keywords

Subjects


1. Agayev, Y. M., Fernandez, J. -A. and Zarifi, E. 2009. Clonal selection of saffron (Crocus sativus L.): the first optimistic experimental results. Euphytica, 169: 81–99. https://doi.org/10.1007/s10681-009-9946-z.
2. Agayev, Y. M., Shakib, A. M., Soheilivand, S. and Fathi, M. 2007. Breeding of saffron (Crocus sativus): possibilities and problems. Acta Hortic., 739: 203–207.
3. Amirnia, R., Bayat, M. and Gholamian, A. 2013. Influence of corm provenance and sowing dates on stigma yield and yield components in saffron (Crocus sativus L.). Turkish J. F. Crop., 18: 198–204.
4. Baghalian, K., Sheshtamand, M. S. and Jamshidi, A. H. 2010. Genetic variation and heritability of agro-morphological and phytochemical traits in Iranian saffron (Crocus sativus L.) populations. Ind. Crops Prod., 31: 401–406.
5. Babaei, S., Talebi, M., Bahar, M. and Zeinali, H. 2014. Analysis of genetic diversity among saffron (Crocus sativus) accessions from different regions of Iran as revealed by SRAP markers. Sci. Hortic., 171: 27-31. https://doi.org/10.1016/j.scienta.2014.03.033.
6. Bayat, M., Amirnia, R., Tanyolac, B. and Rahimi, M. 2016. Molecular phylogenetic among saffron (Crocus sativus L.) accessions. J. Med. Spice Plants, 21: 168–173.
7. Behdani, M. A., Al-Ahmadi, M. J. and Fallahi, H. -R. 2016. Erratum to: Biomass partitioning during the life cycle of saffron (Crocus sativus L.) using regression models. J. Crop Sci. Biotechnol., 19: 189–190.
8. Ben El Caid, M., Salaka, L., El Merzougui, S., Lachguer, K., Lagram, K., El Mousadik, A. and Serghini, M. A. 2020. Multi-site evaluation of the productivity among saffron (Crocus sativus L.) for clonal selection purposes. J. Appl. Res. Med. Aromat. Plants, 17: 100248.
9. Bicharanloo, B., Moghaddam, P. R. and Asadi, G. 2021. Does summer irrigation alter nitrogen uptake and utilisation efficiency of saffron (Crocus sativus L.) for different organic and chemical fertilisers?. Arch. Agron. Soil Sci., 67: 1754-1769. https://doi.org/10.1080/03650340.2020.1808200.
10. Busconi, M., Soffritti, G., Stagnati, L., Marocco, A., Martínez, J. M., Pascual, M. D. L. M. and Fernandez, J. A. 2018. Epigenetic stability in Saffron (Crocus sativus L.) accessions during four consecutive years of cultivation and vegetative propagation under open field conditions. Plant Sci., 277: 1–10.
11. Cardone, L., Castronuovo, D., Perniola, M., Cicco, N. and Candido, V. 2019. Evaluation of corm origin and climatic conditions on saffron (Crocus sativus L.) yield and quality. J. Sci. Food Agric., 99: 5858–5869. https://doi.org/10.1002/jsfa.9860.
12. Cardone, L., Castronuovo, D., Perniola, M., Cicco, N. and Candido, V. 2020. Saffron (Crocus sativus L.), the king of spices: An overview. Sci. Hortic., 272: 109560.
13. Cardone, L., Castronuovo, D., Perniola, M., Cicco, N., Molina, R. V., Renau-Morata, B., Nebauer, S. G. and Candido, V. 2021. Crocus sativus L. Ecotypes from Mediterranean Countries: Phenological, Morpho-Productive, Qualitative and Genetic Traits. Agronomy, 11: 551. https://doi.org/10.3390/agronomy11030551.
14. Ehsanzadeh, P., Yadollahi, A. A. and Maibodi, A. M. M. 2003. Productivity, growth and quality attributes of 10 Iranian saffron accessions under climatic conditions of Chahar-Mahal Bakhtiari, Central Iran. Acta Hortic., 650: 183–188. https://doi.org/10.17660/ActaHortic.2004.650.18.
15. Fukai, S., Inthapanya, P., Blamey, F. P. C. and Khunthasuvon, S. 1999. Genotypic variation in rice grown in low fertile soils and drought-prone, rainfed lowland environments. F. Crop. Res., 64: 121–130.
16. Ghanbari, J. and Khajoei-Nejad, G. 2018. The effect of compost and combination of compost and biochar application in soil bulk density of planting bed, seedling emergence rate and early growth of saffron ecotypes. Saffron Agron. Technol., 6: 17–33.
17. Ghanbari, J. and Khajoei-Nejad, G. 2021. Integrated nutrient management to improve some soil characteristics and biomass production of saffron. Ind. Crops Prod., 166: 113447.
18. Ghanbari, J. and Khajoei-Nejad, G. 2022. Relationships between growth indices, dry matter production, and nutrient use efficiency in saffron: Integrative effect of mycorrhizal inoculation and nutrient resources. J. Plant Nutr., 1-19. https://doi.org/10.1080/01904167.2022.2063138.
19. Ghanbari, J., Khajoei-Nejad, G., Erasmus, S. W. and van Ruth, S. M. 2019a. Identification and characterisation of volatile fingerprints of saffron stigmas and petals using PTR-TOF-MS: Influence of nutritional treatments and corm provenance. Ind. Crops Prod., 141: 111803.
20. Ghanbari, J., Khajoei-Nejad, G. and van Ruth, S. M. 2019b. Effect of saffron (Crocus sativus L.) corm provenance on its agro-morphological traits and bioactive compounds. Sci. Hortic., 256: 108605.
21. Gresta, F., Avola, G., Lombardo, G. M., Siracusa, L. and Ruberto, G. 2009. Analysis of flowering, stigmas yield and qualitative traits of saffron (Crocus sativus L.) as affected by environmental conditions. Sci. Hortic., 119: 320–324.
22. Inthapanya, P., Sipaseuth, Sihavong, P., Sihathep, V., Chanphengsay, M., Fukai, S. and Basnayake, J. 2000. Genotype differences in nutrient uptake and utilisation for grain yield production of rainfed lowland rice under fertilised and non-fertilised conditions. F. Crop. Res., 65: 57–68.
23. Kafi, M., Kamili, A. N., Husaini, A. M., Ozturk, M. and Altay, V. 2018. An expensive spice saffron (Crocus sativus L.): a case study from Kashmir, Iran, and Turkey, in: Global Perspectives on Underutilized Crops. Springer, pp. 109–149.
24. Koocheki, A. and Seyyedi, S. M., 2015. Relationship between nitrogen and phosphorus use efficiency in saffron (Crocus sativus L.) as affected by mother corm size and fertilization. Ind. Crops Prod., 71: 128–137.
25. Mir, M. A., Mansoor, S., Sugapriya, M., Alyemeni, M. N., Wijaya, L. and Ahmad, P. 2021. Deciphering genetic diversity analysis of saffron (Crocus sativus L.) using RAPD and ISSR markers. Saudi. J. Biol. Sci., 28: 1308-1317. https://doi.org/10.1016/j.sjbs.2020.11.063.
26. Molina, R. V, Valero, M., Navarro, Y., Guardiola, J. L. and Garcia-Luis, A. 2005. Temperature effects on flower formation in saffron (Crocus sativus L.). Sci. Hortic., 103: 361–379.
27. Rezvani-Moghaddam, P. 2020. Ecophysiology of saffron, in: Saffron. Elsevier, pp. 119–137.
28. Siracusa, L., Gresta, F., Avola, G., Albertini, E., Raggi, L., Marconi, G., Lombardo, G. M. and Ruberto, G. 2013. Agronomic, chemical and genetic variability of saffron (Crocus sativus L.) of different origin by LC-UV–vis-DAD and AFLP analyses. Genet. Resour. Crop Evol., 60: 711–721.
29. Xu, G., Fan, X. and Miller, A. J. 2012. Plant nitrogen assimilation and use efficiency. Annu. Rev. Plant Biol., 63: 153–182.