Ethephon Stimulation on Trunk Leads to Leaf Physiological Changes in Rubber Tree Seedlings

Document Type : Original Research

Authors
1 Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences,GuiYang, GuiZhou, 550006, China.
2 Hainan ZhongYi New Materials Research Institute Co., Ltd., SanYa, 572025, China.
3 Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Gui Yang, Gui Zhou, 550006, China.
4 Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical crops, Hainan University, HaiKou, 570228, China.
Abstract
Ethephon was widely used in rubber tree plantation to stimulate latex production. Numerous studies demonstrated that ethephon treatment prolongs the flow of the latex and promotes latex regeneration in the trunk of mature rubber tree seedlings. However, how rubber tree leaves responded to ethephon treatment on the trunk is still unknown. We used rubber tree seedlings to detect the physiological response of leaves after the trunk treatment with ethephon. The photosynthetic rate, the sugar and starch content, as well as the enzyme activities involved in sugar metabolism were measured after 0, 12, 24, 36 and 48 hours with 0.6% ethephon treatment. The result demonstrated that ethephon treatment increased latex production on the trunk, while the net photosynthetic rate, transpiration rate, and stomatal conductance in leaves were significantly reduced. At the same time, sucrose decreased significantly with concomitant slight increase in glucose and fructose. Also, the enzymatic activities of Sucrose Phosphate Synthase (SPS), Sucrose Synthase (SS) and Neutral/alkaline Invertase (NI) increased significantly after ethephon treatment. Ethephon treatment affected the starch content, but did not change the composition of starch in rubber tree seedlings leaves; the overall starch changing pattern was similar to that of sucrose in leaves. It can be concluded that ethylene-stimulated latex production in rubber tree seedlings is partly due to the alteration of sucrose metabolism in leaves, and ethylene has an adverse physiological effect on rubber trees.

Keywords

Subjects


References
1. Abraham, P. D. 1970. Field trials with ethrel. Rubber Res Inst Malaya Plant Bull., 111: 366-386.
2. Auzae, J. D. 1969. Ethylene, nouvel agent stimulant de la production de latex chez l'Hevea brasiliensis. Acad Sci Compt Rend Ser D., 268: 3046-3049.
3. Beltrano, J., Ronco, M. G., and Montaldi, E. R. 1999. Drought Stress Syndrome in Wheat Is Provoked by Ethylene Evolution Imbalance and Reversed by Rewatering, Aminoethoxyvinylglycine, or Sodium Benzoate. J Plant Growth Regul., 18(2): 59-64.
4. Bradford, M. M. 1976. A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. (72): 248–254.
5. Chrestin, H. 1989. Biochemical aspects of bark dryness induced by overstimulation of rubber trees with ethrel. In Physiology of rubber tree latex, A. J., J. J.; Talor and Francis Group, Great Britain and the United States., PP. 431-440.
6. Chrestin, H., Marin, B., Jacob, J. L., Auzac, J. D. 1989. Metabolic regulation and homeostasis in the laticiferous cell. Journal of Physical Chemistry A., 113: 165-178.
7. D'Auzac, J., Jacob, J. L., Prévôt, J. C., Clément, A., Gallois, R., Crestin, H., Lacote, R., Pujade-Renaud, V., Gohet, E. 1997. The regulation of cis-polyisoprene production (natural rubber) from Hevea brasiliensis. Recent research developments in plant physiology., 1: 273-332.
8. Duan, C., Argout, X., Gébelin, V., Summo, M., Dufayard, J. F., Leclercq, J., Kuswanhadi, Piyatrakul, P., Pirrello, J., Rio, M., Champion, A., Montoro, P. 2013. Identification of the Hevea brasiliensis AP2/ERF superfamily by RNA sequencing. BMC genomics., 14: 30.
9. Dusotoit-coucaud, A., Brunel, N., Kongsawadworakul, P., Viboonjun, U., Lacointe, A., Julien, J. L., Chrestin, H. Sakr, S. 2009. Sucrose importation into laticifers of Hevea brasiliensis, in relation to ethylene stimulation of latex production. Annals of Botany., 104(4): 635-647.
10. Dusotoit-Coucaud, A., Kongsawadworakul, P., Maurousset, L., Viboonjun, U., Brunel, N., Pujade-Renaud, V., Chrestin, H., Sakr, S. 2010. Ethylene stimulation of latex yield depends on the expression of a sucrose transporter (hbsut1b) in rubber tree (Hevea brasiliensis). Tree physiology., 30(12): 1586-1598.
11. Eschbach, J. M., Roussel, D., Sype, H. V. D., Jacob, J. L., Auzac, J. D. 1984. Relationships between yield and clonal physiological characteristics of latex from Hevea brasiliensis. Physiologie Vegetale., 22(3): 295-304.
12. Gidrol, X., Chrestin, H., Tan, H. L., Kush, A. 1994. Hevein, a lectin-like protein from Hevea brasiliensis (rubber tree) is involved in the coagulation of latex. Journal of Biological Chemistry., 269(12): 9278-9283.
13. Hu, H. -Q., Wang, L. -H., Wang, Q. -Q., Jiao, L. -Y., Hua, W. -Q., Zhou, Q., Huang, X. -H. 2014, Photosynthesis, chlorophyll fluorescence characteristics, andchlorophyll content of soybean seedlings under combined stress of bisphenol A and cadmium. Environmental Toxicology and Chemistry., 33(11): 2455-2462.
14. Huber, S. C. 1981. Interspecific variation in activity and regulation of leaf sucrose phosphate synthetase 1. Zeitschrift Für Pflanzenphysiologie., 102(5): 443-450.
15. Jacob, J. L., Eschbach, J. M., Prevot, J. L., Roussel, D., Lacrotte, R., Chrestin, H, Auzac, J. d'. 1986. Physiological basis for latex diagnosis of the functioning of the laticiferous system in rubber trees. International rubber conference., PP. 43-65.
16. Jacob, J. L., Prevot, J. C., and Lacrotte, R. 1994. Tapping panel dryness in Hevea brasiliensis. Plantations Recherche Developpement., 1(3): 15-24.
17. Jacob, J. L., Prevot, J. C., Roussel, D., Lacrotte, R., Serres, E., D'Auzac, J., Eschbach, J. M., Omont, H. 1989. Yield-limiting factors, latex physiological parameters, latex diagnosis, and clonal typology. Physiology of Rubber Tree Latex., PP. 345-382.
18. Ko, J. -H., Chow, K. -S., and Han, K. -H. 2003. Transcriptome analysis reveals novel features of the molecular events occurring in the laticifers of Hevea brasiliensis (para rubber tree). Plant Molecular Biology., 53(4): 479-492.
19. Lestari, R., Rio, M., Martin, F., Leclercq, J., Woraathasin, N., Roques, S., Dessailly, F., Clément-Vidal, A., Sanier, C., Fabre, D., Melliti, S., Suharsono, S., Montoro, P. 2018. Overexpression of hevea brasiliensis ethylene response factor hberf‐ixc5 enhances growth, tolerance to abiotic stress and affects laticifer differentiation. Plant Biotechnology Journal., 16(1): 322-336.
20. Li, Y. -Z., Zhao, J. -Y., Wu, S. -M., Fan, X. -W., Luo, X. -L., Chen, B. -S. 2016. Characters related to higher starch accumulation in cassava storage roots. Scientific reports., 6(1): 19823.
21. Liu, J. -P., Xia, Z. -Q., Tian, X. -Y., Li, Y. -J. 2015. Transcriptome sequencing and analysis of rubber tree (Hevea brasiliensis muell.) to discover putative genes associated with tapping panel dryness (TPD). BMC genomics., 16(1): 398.
22. Liu, J. -P., Zhuang, Y. -F., Guo, X. -L., Li, Y. -J. 2016. Molecular mechanism of ethylene stimulation of latex yield in rubber tree (Hevea brasiliensis) revealed by de novo sequencing and transcriptome analysis. BMC genomics., 17: 257.
23. Liu, J. -P. 2016. Molecular mechanism underlying ethylene stimulation of latex production in rubber tree (Hevea brasiliensis). Trees., 30(6): 1-9.
24. Mesquita, A. C., Oliveira, L. E. M. D., Mazzafera, P., Delú-Filho, N. 2006. Anatomical characteristics and enzymes of the sucrose metabolism and their relationship with latex yield in the rubber tree (Hevea brasiliensis Muell. Arg.). Brazilian Journal of Plant Physiology., 18(2): 263-268.
25. Milford, G. F. J., Paardekooper, E. C., and Yee, H. C. 1969. Latex vessel plugging, its importance to yield and clonal behaviour. Rubber Res Inst Malaya J., 21: 274-282.
26. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Biochemistry., 31(3): 426-428.
27. Mooibroek, H., and Cornish, K. 2000. Alternative sources of natural rubber. Applied Microbiology and Biotechnology., 53(4): 355-365.
28. Pan, Z. -W., Wang, H. -Q., and Zhong, J. -J. 2000. Scale-up study on suspension cultures of taxus chinensis cells for production of taxane diterpene. Enzyme Microb Technol., 27(9): 714-723.
29. Rahman, A. Y. A., Usharraj, A. O., Misra, B. B., Thottathil, G. P., Jayasekaran, K., Feng, Y., Hou, S. b., Ong, S. Y., Ng, F. L., Lee, L. S., Tan, H. S., Sakaff, M. K. L. M., Teh, B. S., Khoo, B. F., Badai, S. S., Aziz, N. A., Yuryev, A., Knudsen, B., Dionne-Laporte, A., Mchunu, N. P., Yu, Q., Langston, B. J., Freitas, T. A. K., Young, A. G., Chen, R., Wang, L., Najimudin, N., Saito, J. A., Alam, M. 2013. Draft genome sequence of the rubber tree Hevea brasiliensis. BMC genomics., 14: 75.
30. Sainoi, T., and Sdoodee, S., 2012. The impact of ethylene gas application on young-tapping rubber trees. International Journal of Agricultural Technology., 8(4): 1497-1507.
31. Salomez, M., Subileau, M., Intapun, J., Bonfils, F., Sainte-Beuve, J., Vaysse, L., Dubreucq, E. 2014. Micro-organisms in latex and natural rubber coagula of Hevea brasiliensis and their impact on rubber composition, structure and properties. Journal of Applied Microbiology., 117(4): 921-929.
32. Shoji, T., Kajikawa, M., Hashimoto, T. 2010. Clustered transcription factors regulate nicotine biosynthesis in tobacco. Plant cell., 22(10): 3390-3409.
33. Souza, L. M. D, Guen, V. L., Silva, C. C., Mantello, C. C., Conson, A. R. O., Vianna, J. P. G., Zucchi, M. I., Junior, E. J. S., Fialho, J. D. F., Moraes, M. L. T. D., Gonçalves, P. D. S., Souza, A. P. D. 2015. Genetic diversity strategy for the management and use of rubber genetic resources: More than 1,000 wild and cultivated accessions in a 100-genotype core collection. PloS one., 10(7): e0134607.
34. Sumitomo, K., Narumi, T., Satoh, S., Hisamatsu, T. 2008. Involvement of the ethylene response pathway in dormancy induction in chrysanthemum. Journal of experimental botany., 59(15): 4075-4082.
35. Tang, C., Huang, D., Yang, J., Liu, S., Sakr, S., Li, H., Zhou, Y., Qin, Y. 2010. The sucrose transporter HbSUT3 plays an active role in sucrose loading to laticifer and rubber productivity in exploited trees of Hevea brasiliensis (para rubber tree). Plant Cell & Environment., 33(10): 1708-1720.
36. Ttxpy, J., and Peimot, L. 1976. Control of carbohydrate metabolism by ethylene in latex vessels of Hevea brasiliensis muel. Arc in relation to rubber production. Biologia Plantarum., 18: 373-383.
37. Tungngoen, K., Kongsawadworakul, P., Viboonjun, U., Katsuhara, M., Brunel, N., Sakr, S., Narangajavana, J., Chrestin, H. 2009. Involvement of HbPIP2;1 and HbTIP1;1 aquaporins in ethylene stimulation of latex yield through regulation of water exchanges between inner liber and latex cells in Hevea brasiliensis. Plant Physiol., 151(2): 843-56.
38. Tupý, J. 1973. The activity of latex invertase and latex production of Hevea brasiliensis. Physiol. Veg., 11: 633–641.
39. Wang, Q. -H., Zhang, S. -F., and Yang, J. -Z. 2007. Hplc analysis of sucrose ester analogs using evaporative light scattering detection. Journal of Liquid Chromatography & Related Technologies., 30(16): 2395-2407.
40. Wititsuwannakul, R., Pasitkul, P., Jewtragoon, P., Wititsuwannakul, D. 2008. Hevea latex lectin binding protein in c-serum as an anti-latex coagulating factor and its role in a proposed new model for latex coagulation. Phytochemistry., 69(3): 656-662.
41. Wu, J. -L., Tan, H. -Y., Zhong, H. -B. 2008. Aspects of the development of tapping panel dryness induced by overstimulation with ethrel in Hevea brasiliensis. Chinese Journal of Tropical Crops., 29: 1-9.
42. Zeng, X., and Huang, H. S. 2004. The collection, conservation and research advance of rubber tree germplasm resources. Tropical Agricultural Science & Technology., (01): 24-29.
43. Zhao, J., Zheng, S. -H., Fujita, K., Sakai, K. 2004. Jasmonate and ethylene signalling and their interaction are integral parts of the elicitor signalling pathway leading to β‐thujaplicin biosynthesis in cupressus lusitanica cell cultures. Journal of experimental botany., 55(399): 1003-1012.