Sensitivity Analysis of Wheat Cultivar HD2967 to Weather Parameters Using CERES-Wheat Model

Document Type : Original Research

Authors
Water Technology Centre, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, India.
Abstract
This study was conducted to examine the sensitivity of weather parameters and CO2 concentration to wheat production under two irrigation regimes viz. full irrigation and limited irrigation, using CERES-Wheat model. Field experiment data from the 2016-17 and 2017-18 rabi seasons on wheat cultivar HD-2967 with three sowing dates and five irrigation regimes were used to calibrate and validate the CERES-Wheat crop simulation model. Validation results indicated very good agreement between simulated and observed values under five, four, and three irrigations regimes as compared to lower irrigation regimes. Under full irrigation and limited irrigation, grain yield sensitivity to incremental unit of mean temperature from 1 to 3°C revealed a decrease of 6 to 22% and 8 to 16%, respectively. Temperature decreases of 1-3°C resulted in a gradual increase in yield of 10-28 and 6.5- 20%, respectively, under full and limited irrigation. The combined effect of higher mean temperature and lower solar radiation revealed that wheat yield was more sensitive to temperature than solar radiation. Furthermore, the combined effect of mean temperature and CO2 level revealed that higher levels of CO2 concentration yielded the greatest benefits with a 1 °C increase in temperature, but further increases in temperature reduced the beneficial effect of elevated CO2 level under both irrigation conditions.

Keywords

Subjects


1. Ajdary, K., Singh, D. K., Singh, A. K. and Khanna, M. 2007. Modelling of nitrogen leaching from experimental onion field under drip fertigation. Agri. Water Manag., 89: 15-28.
2. Anwar, M. R., O’Leary, G., McNeil, D., Hossain, H. and Nelson, R. 2007. Climate change impact on rainfed wheat in south-eastern Australia. Field Crops Res., 104: 139-147.
3. Beadle C. L., Ludlow M. M. and Honeysett J. L. 1993. Water relations. In Photosynthesis and production in a changing environment. A field and laboratory manual (eds DO Hall, JMO Scurlock, HR Bolhàr-Nordenkampf, RC Leegood, SP Long), pp. 113–128. London, UK: Chapman & Hall.
4. Bisht H. and Shaloo. 2022. Development and Evaluation of Irrigation Management Strategies for Higher Yield and Water Productivity of Wheat: A Simulation Modelling Approach. Ind. J. Eco., 49(3): 721-726.
5. Chandran M. A. S., Banerjee S., Mukherjee A., Nanda M. K., Mondal S. and Kumari V. V. 2021. Evaluating the impact of projected climate on rice–wheat‑groundnut cropping sequence in lower Gangetic plains of India: a study using multiple GCMs, DSSAT model, and long‑term sequence analysis. Theor. Appl. Climatol. 145: 1243-1258.
6. Chen, C., Baethgen, W. E. and Robertson, A. 2012. Contributions of individual variation in temperature, solar radiation and precipitation to crop yield in the North China Plain, 1961–2003. Climatic Change, 116(3): 767-788.
7. Geerts, S. and Raes, D. 2009. Deficit irrigation as an on-farm strategy to maximise crop water production in dry areas. Agri. water manag., 96(9):1275-1284.
8. Gu, L. H., Pallardy, S. G., Tu, K., Law, B. E. and Wullschleger, S. D. 2010. Reliable estimation of biochemical parameters from C3 leaf photosynthesis–intercellular carbon dioxide response curves. Plant Cell Environ., 33 (11): 1852-1874.
9. Haris, A. A., Biswas, S., Chhabra, V., Elanchezhian, R. and Bhatt, B. P. 2013. Impact of climate change on wheat and winter maize over a sub-humid climatic environment. Curr. Sci., 104 (2): 206-214.
10. He, W. et al. 2018. Climate change impacts on crop yield, soil water balance and nitrate leaching in the semiarid and humid regions of Canada. PLoS ONE, 13(11): 0207370.
11. Högy, P. and Fangmeier, A. 2008. Effects of elevated atmospheric CO2 on grain quality of wheat. J. Cereal Sci., 48 (3): 580-591.
12. Hoogenboom, G., Jones, J. W., Wilkens, P. W., Porter, C. H., Boote, K. J. and Hunt, L.A. et al. 2010. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.5, University of Hawaii, Honolulu, Hawaii, 2010.
13. Hundal, S. S. and Kaur, P. 2007. Climatic variability and its impact on cereal productivity in Indian Punjab. Curr. Sci., 92 (4): 506-512.
14. Hunt, L. A., White, J. W. and Hoogenboom, G. 2001. Agronomic data: advances in documentation and protocols for exchange and use. Agri. System., 70: 477-492.
15. IPCC, 2014: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
16. IPCC, 2021. Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 3-32, doi:10.1017/9781009157896.001.
17. Jägermeyr, J., Müller, C. and Ruane, A. C. et al. 2021. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat Food, 2: 873-885.
18. Jahan, M. A. H. S., Sarker, M. J. U., Barma, N. C. D., Sarkar, M. A. Z., Hossain, A., Akhter, M. M., Asaduzzaman, M., Khaleque, M. A. and Islam, R. 2014. Annual Report 2013-14. Wheat Research Centre, Bangladesh Agricultural Research Institute, Gazipur, pp. 114-130.
19. Jahan, M. A. H. S., Senb, R., Ishtiaquec, S., Choudhuryc, A. K., Akhterb, S., Ahmedd, F., Biswase, J. C., Manirruzamanf, M., Miahg, M. M., Rahmanh, M. M. and Kalra. N. 2018. Optimizing sowing window for wheat cultivation in Bangladesh using CERES-wheat crop simulation model. Agri., Ecosyst. Environ., 258: 23-29.
20. Jahani Doghozlou, M. and Emam, Y. 2022. Differential floral developmental patterns in some recently released Iranian bread wheat cultivars. J. Agri. Sci. Tech., 24 (6):1397-1411.
21. Jaradat, A. A. 2009. Modeling biomass allocation and grain yield in bread and durum wheat under abiotic stress. Aust. J. Crop Sci., 3(5): 237-248.
22. Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Wilkens, P. W., Singh, U., Gijsman, A. J. and Ritchie, J. T. 2003. The DSSAT cropping system model. Eur. J. Agron., 18: 235-265.
23. Kersebaum, K.C. and Nendel, C. 2014. Site-specific impacts of climate change on wheat production across regions of Germany using different CO2 response functions. Eur. J. Agron., 52: 22-32.
24. Kimball B. A. 2016. Crop responses to elevated CO2 and interactions with H2O, N, and temperature. Curr. Opin. Plan. Biol, 31: 36-43.
25. Leakey, A. D. B., Ainsworth, E. A., Bernacchi, C. J., Rogers, A., Long, S. P. and Ort, D.R. 2009. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J. Exp. Bot., 60: 2859-2876.
26. Li-li, Z., Shu-hua, L., Zhi-min, W., Pu, W., Ying-hua, Z., Hai-jun, Y., Zhen, G., Si, S., Xiao-gui, L., Jia-hui, W. and Shun-li, Z. 2018. A simulation of winter wheat crop responses to irrigation management using CERES-Wheat model in the North China Plain. J. Integr. Agri. 17 (5): 1181-1193.
27. Liu, B., Asseng, S. and Muller, N. et al. 2016. Similar estimates of temperature impacts on global wheat yield by three independent methods. Nat. Clim. Chang., 6: 1130-1136.
28. Lobell, D. B., Sibley, A. and Ortiz-Monasterio, J. I. 2012. Extreme heat effects on wheat senescence in India. Nature Clim. Change, 2:186-189.
29. Mohanty, M., Nishant K. Sinha, K.M. Hati, K. Sammi Reddy and R.S. Chaudhary. 2015. Elevated temperature and carbon dioxide concentration effects on wheat productivity in Madhya Pradesh: a simulation study. J. Agrometeorol., 17 (2): 185-189.
30. Oseni, T. O. and Masarirambi, M. T. 2011. Effect of climate change on maize (Zea mays) production and food security in Swaziland. American-Eurasian J. Agric. Environ. Sci., 11 (3): 385-391.
31. Pal, R. K., Rawat, K. S., Singh, J. and Murty, N. S. 2015. Evaluation of CSM-CERES-wheat in simulating wheat yield and its attributes with different sowing environments in Tarai region of Uttarakhand. J Applied Nat Sci., 7: 404-409.
32. Qian, B. et al. 2019. Climate impacts on Canadian yields of spring wheat, canola and maize for global warming levels of 1.5, 2.0, 2.5 and 3.0 °C. Environ. Res. Lett., 14: 074005.
33. Ritchie, J. T., Godwin, D. C. and Otter-Nacke, S. 1988. CERES-Wheat: A Simulation Model of Wheat Growth and Development. Texas A&M Univ. Press, College Station.
34. Rosenzweig, C., Elliott, J. et al. 2014. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model inter-comparison. Proc. Nat. Acad. Sci., 111: 3268-3273.
35. Tottman, D. R. 1987. The decimal code for the growth-stages of cereals, with illustrations. Ann. Appl. Biol., 110: 441-454.
36. Yadav, M. K., Singh, R. S., Singh, K. K., Mall, R. K., Patel, C. B., Yadav, S. K. and Singh, M. K. 2015. Assessment of climate change impact on productivity of different cereal crops in Varanasi, India. J. Agrometeorol., 17(2):179-184.
37. Yadav, B., Mukherjee, J., Sehgal, V. K., Das, D. K. and Krishnan, P. 2017. Effect of dimming of global radiation on morphology and yield of wheat crop in Delhi. J. Agrometeorol., 19 (4): 323-327.
38. Xiao, D., Moiwo, J. P., Tao, F., Yang, Y., Shen, Y., Xu, Q., et al. 2015. Spatiotemporal Variability of winter Wheat Phenology in Response to Weather and Climate Variability in China. Mitig. Adapt. Strateg. Glob. Change, 20:1191-1202.
39. Zadoks, J. C., Chang, T. T. and Konzak, C. F. 1974. A decimal code for growth stage of cereal. Weed Res., 14: 415-421.
40. Zaveri, E.B. and Lobell, D. 2019. The role of irrigation in changing wheat yields and heat sensitivity in India, Nat. Commun., 10:4144.
41. Zhao J, Pu F, Li Y, Xu J, Li N, Zhang Y, Guo J and Pan Z. 2017. Assessing the combined effects of climatic factors on spring wheat phenophase and grain yield in Inner Mongolia, China. PLoS One, 12(11): e0185690.