Amin, G., Eynde, E., Verachtert, H. 1983. Determination of by-products formed during the ethanolic fermentation, using batch and immobilized cell systems of Zymomonas mobilis and Saccharomyces bayanus. Eur. J. Appl. Microbiol. Biotechnol. 18, 1–5.
Anderson, R.K.I. & Jayaraman, K. 2003. Influence of Carbon and Nitrogen Sources on the Growth and Sporulation of Bacillus thuringiensis var Galleriae for Biopesticide Production. Chem. Biochem. Eng., 17 (3): 225–231.
Bartelt R, Mcguire M.R., Black D.A. 1990. Feeding stimulants for the European corn borer (Lepidoptera: Pyralidae): additives to a starch-based formulation for Bacillus thuringiensis. Environ. Entomol., 19, 182–189.
Behle R, Mcguire MR, Shasha B.S. 1997. Effects of sunlight and simulated rain on residual activity of Bacillus thuringiensis formulations. J. Econ. Entomol. 90, 1560–1566.
Chandrashekhar Devidas, P., Hemant Pandit, B. & Satish Vitthalrao, P. 2014. Evaluation of Different Culture Media for Improvement in Bioinsecticides Production by Indigenous Bacillus thuringiensis and Their Application against Larvae of Aedes aegypti. Scientific World J., 1, 1-7.
Cheng, X., Ye, J., He, H., Liu, Z., Xu, C., Wu, B., et al. 2018. Synthesis, characterization and in vitro biological evaluation of two matrine derivatives. Scientific Reports, 8: 15686.
D. P. Sikdar M. K. Majumdar S. K. Majumdar. 1991. Effect of minerals on the production of the delta endotoxin by Bacillus thuringiensis subsp. israelensis, Biotechnol. Letters, 13 (7), 511–514.
Eagan, K. 2002. Demand for pesticides on the rise. In: Grounds maintenance. PRIMEDIA Business Magazines & Media Inc., New York.
Eski A, Demir İ, Sezen K, Demirbağ Z. 2017. A new biopesticide from a local Bacillus thuringiensis var. tenebrionis (Xd3) against alder leaf beetle (Coleoptera: Chrysomelidae). World J. of Microbiol. Biotechnol. 33(5), 95.
Ferro, D.N., Yuan, Q.C., Slocombe, A., & Tuttle, A.F. 1993. Residual activity of insecticides under field conditions for controlling the Colorado potato beetle (Coleoptera: Chrysomelidae). J. Econ. Entomol, 86: 511–516.
Graham S. Thurston. 1998. Natural Resources Canada, Canadian Forest Service - Atlantic Forestry Centre. Biological Control of Elm Leaf Beetle, 154-159.
Gillespie R.L., McGuire M.R., Shasha B.S. 1994. Palatability of flour granular formulations to European corn borer larvae (Lepidoptera: Pyralidae). J Econ. Entomol. 87, 452–457.
Han, H. H., Yoon, J., Son, S., Kim, J., and Lee, S. Y. 2015. Combination effects of organic materials and Bacillus thuringiensis on Spodoptera exigua. Korean Jbof Pesticide Sci, 4: 411–417.
Hilbeck A., Eckel C., Kennedy G.G. 1998. Impact of Bacillus thuringiensis—insecticides on population dynamics and egg predation of the Colorado potato beetle in North Carolina potato plantings. Biocontrol. 43, 65–75.
Holmberg A., Sievänen R., Carlberg G. 2004. Fermentation of Bacillus thuringiensis for exotoxin production: Process analysis study. Biotechnol and Bioeng. 1707–1724.
Huang, D.-F., Zhang, J., Song, F.-P. and Lang, Z.-H. 2007. Microbial control and biotechnology research on Bacillus thuringiensis in China. J. Invertebr. Pathol. 95, 175–180.
Khorramvatan S, Marzban R, Ardjmand M, Safekordi A, Askary, H. 2014. The effect of polymers on the stability of microencapsulated formulations of Bacillus thuringiensis subsp. kurstaki (Bt-KD2) after exposure to ultra violet radiation. Biocontrol. Sci. Technol. 24, 215–220.
Khorramvatan, S., Marzban, R., Ardjmand, M., Askari, H. 2017. Optimising microencapsulated formulation stability of Bacillus thuringiensis subsp. kurstaki (Bt-KD2) against ultraviolet condition using response surface methodology. Archives of Phytopathology and Plant Protection. 50 (5).
Langenbruch, G.A., Krieg, A., Huger, A.M., & Schnetter, W. 1985. Erst Feldversuche zur Bekämpfung der Larven des Kartoffelkäfers (Leptinotarsa decemlineata) mit Bacillus thuringiensis var. tenebrionis. Mededelingen Faculteit Landbouwkunde, Rijksuniversiteit Gent, 50: 441-449.
Lord, J.C. 2005. From Metchnikoff to Monsanto and beyond: the path of microbial control. J Invertebr Pathol. 89:19–29.
Marzban, R., Saberi, F., Shirazi, M.M. 2016. Microfiltration and ultrafiltration of Bacillus thuringiensis fermentation broth: membrane performance and spore-crystal recovery approaches. Brazilian J. Chem. Eng. 33(4), 783-791.
Mazid, S., & Kalita, J.C. 2011. A review on the use of biopesticides in insect pest management. Int. J Sci Adv Technol, 1:169–178.
Oberemok, V.V., Laikova, K.V., Gninenko, Y.I., Zaitsev, A.S., Nyadar, P.M., & Adeyemi T.A. 2015. A short history of insecticides. J. Plant Prot Res, 55:221–226.
Rowe, G.E. and Margaritis, A. 1987. Bioprocess developments in the production of bioinsecticides by Bacillus thuringiensis. CRC Critical Rev. Biotechnol., 6, 87–127.
Saberi, F., Marzban, R., Ardjmand, M. 2014. Optimization of Bacillus thuringiensis production process in lab Fermenter. Biolog Control Pest Plant Dis. 3, 165-172.
Sarrafzadeh, M.H. 2014. Nutritional Requirements of Bacillus thuringiensis During Different Phases of Growth, Sporulation and Germination Evaluated by Plackett-Burman Method. Iran. J. Chem. Chem. Eng. 31 (4), 131-136.
Shrestha, G., Reddy, G.V.P., Jaronski, S.T. 2018. Field efficacy of Bacillus thuringiensis galleriae strain SDS-502 for the management of alfalfa weevil and its impact on Bathyplectes spp. parasitization rate. J Inverteb Pathol. 153: 6-11.
Smouse, D., Nishiura, J. 1997. A Bacillus thuringiensis -endotoxin induces programmed cell death in mosquito larvae. Cell Death and Differentiation. 4, 560 - 569.
Suchy J. 1988. Note on the biology of the Chrysomelid, Agelastica alni (L.) and the predator Hister helluo Truqui. Zpravy Muzei Zapadoces Kraj 93, 36-37.
Tamez-Guerra P, McGuire M.R., Behle R.W., Shasha B.S., Wong L.J. 2000. Assessment of microencapsulated formulations for improved residual activity of Bacillus thuringiensis. J. Econ. Entomol. 93, 219–225.
Thakore, Y. 2006. The biopesticide market for global agricultural use. Ind Biotechnol. 2:192–208.
Touhidul Islam M., Olleka A., Ren S. 2010. Influence of neem on susceptibility of Beauveria bassiana and investigation of their combined efficacy against sweet potato whitefly, Bemisia tabaci on eggplant. Pesticide Biochem. Physiol., 98 (1): 45-49.
WHO, 1999. Microbial pest control agent Bacillus thuringiensis. Report of UNEP/ILO/WHO (EHC, 217). WHO, Geneva (https://www.who.int/ipcs/publications/ehc/en/EHC217. PDF).
Wu, J., Yu, X., Wang, X., Tang, L., and Ali, Sh. 2019. Matrine Enhances the Pathogenicity of Beauveria brongniartii Against Spodoptera litura (Lepidoptera: Noctuidae) Frontiers in Microbiol., 10: 1-9.
Yezza, A., Tyagi, R.D., Valero, J.R. & Surampalli, R.Y. 2004. Scale-up of biopesticide production processes using wastewater sludge as a raw material. J. Ind. Microbiol. Biotechnol. 31: 545-552.