Metallophosphoesterases of Chlamydomonas reinhardtii and Analyses of Their Transcription Levels Under Phosphate Deficiency

Document Type : Original Research

Authors
Department of Agricultural Biotechnology, Faculty of Agriculture, Akdeniz University, Türkiye.
Abstract
Phosphorous (P) is an important macroelement for all organisms. However, there is a finite amount of P on Earth, therefore, new enzymes and technologies are needed for better P use in agriculture. Metallophosphoesterases are a large group of evolutionarily related proteins that are important in biotechnology. We found fourteen putative Metallophosphoesterase (MPA) genes in the genome of Chlamydomonas reinhardtii. Our RT-PCR analyses showed that some of these genes were constitutively expressed, and some were upregulated under phosphate deficiency. These results and bioinformatic analyses suggest that two of the genes (MPA11 and MPA13) are transcribed in high levels and the putative polypeptides are predicted to be secreted to extracellular space, making them ideal to be used in biotechnological applications. Phylogenetic analyses show that MPA11 and MPA13 are related to known phytases from plant species, suggesting MPA11 and MPA13 might have specific phytase activity. In light of these results, we discuss the potential of C. reinhardtii as a phytase producing organism for agricultural and industrial use.

Keywords

Subjects


1. Antonyuk, S.V., Olczak, M., Olczak, T., Ciuraszkiewicz, J., Strange, R.W., 2014. The structure of a purple acid phosphatase involved in plant growth and pathogen defence exhibits a novel immunoglobulin-like fold. IUCrJ, 1: 101–109.
2. Bajhaiya, A.K., Dean, A.P., Zeef, L.A.H., Webster, R.E., Pittman, J.K., 2016. PSR1 is a global transcriptional regulator of phosphorus deficiency responses and carbon storage metabolism in Chlamydomonas reinhardtii. Plant Physiol.. 170: 1216–1234.
3. Bosch, J., Paige, M.H., Vaidya, A.B., Bergman, L.W., Hol, W.G.J., 2012. Crystal structure of GAP50, the anchor of the invasion machinery in the inner membrane complex of Plasmodium falciparum. J. Struct. Biol., 178: 61–73.
4. Chang, C.W., Moseley, J.L., Wykoff, D., Grossman, A.R., 2005. The LPB1 gene is important for acclimation of Chlamydomonas reinhardtii to phosphorus and sulfur deprivation. Plant Physiol., 138: 319–329.
5. Dermol, U., Janardan, V., Tyagi, R., Visweswariah, S.S., Podobnik, M., 2011. Unique utilization of a phosphoprotein phosphatase fold by a mammalian phosphodiesterase associated with WAGR syndrome. J. Mol. Biol., 412: 481–494.
6. Dionisio, G., Madsen, C.K., Holm, P.B., Welinder, K.G., Jørgensen, M., Stoger, E., Arcalis, E., Brinch-Pedersen, H., 2011. Cloning and characterization of purple acid phosphatase phytases from wheat, barley, maize, and rice. Plant Physiol., 156: 1087–1100.
7. Gorman, D.S., Levine, R.P., 1965. Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc. Natl. Acad. Sci. U. S. A., 54: 1665–1669.
8. Grossman, A.R., Aksoy, M., 2015. Algae in a Phosphorus-Limited Landscape, in: Phosphorus Metabolism in Plants.
9. Harris, E.H., 2001. Chlamydomonas as a model organism. Annu. Rev. Plant Biol., 52: 363–406.
10. Hayes, J.E., Richardson, A.E., Simpson, R.J., 1999. Phytase and acid phosphatase activities in extracts from roots of temperate pasture grass and legume seedlings. Aust. J. Plant Physiol., 26: 801–809.
11. Henrik Nielsen, 2017. Predicting Secretory Proteins with SignalP, in: Methods in Molecular Biology., 1611: 59–73.
12. Huerta-Cepas, J., Serra, F., Bork, P., 2016. ETE 3: Reconstruction, Analysis, and Visualization of Phylogenomic Data. Mol. Biol. Evol., 33: 1635–1638.
13. Jing, M., Zhao, S., Rogiewicz, A., Slominski, B.A., House, J.D., 2021. Effects of phytase supplementation on production performance, egg and bone quality, plasma biochemistry and mineral excretion of layers fed varying levels of phosphorus. Animal, 15: 100010.
14. Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N., Sternberg, M.J.E., 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc., 10: 845–858.
15. Klabunde, T., Sträter, N., Fröhlich, R., Witzel, H., Krebs, B., 1996. Mechanism of Fe(III)-Zn(II) purple acid phosphatase based on crystal structures. J. Mol. Biol., 259: 737–748.
16. Lei, X.G., Weaver, J.D., Mullaney, E., Ullah, A.H., Azain, M.J., 2013. Phytase, a new life for an “old” enzyme. Annu. Rev. Anim. Biosci., 1: 283–309.
17. Letunic, I., Bork, P., 2018. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res., 46: D493–D496.
18. Lim, S.M. e., Yeung, K., Trésaugues, L., Ling, T.H. sian., Nordlund, P., 2016. The structure and catalytic mechanism of human sphingomyelin phosphodiesterase like 3a--an acid sphingomyelinase homologue with a novel nucleotide hydrolase activity. FEBS J., 283: 1107–1123.
19. Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G.A., Sonnhammer, E.L.L., Tosatto, S.C.E., Paladin, L., Raj, S., Richardson, L.J., Finn, R.D., Bateman, A., 2021. Pfam: The protein families database in 2021. Nucleic Acids Res., 49(D1): D412–D419.
20. Moseley, J.L., Gonzalez-Ballester, D., Pootakham, W., Bailey, S., Grossman, A.R., 2009. Genetic interactions between regulators chlamydomonas phosphorus and sulfur deprivation responses. Genetics, 181: 889–905.
21. Mullaney, E.J., Ullah, A.H.J., 2003. The term phytase comprises several different classes of enzymes. Biochem. Biophys. Res. Commun., 312: 179–184.
22. Olczak, M., Morawiecka, B., Wa̧torek, W., 2003. Plant purple acid phosphatases - Genes, structures and biological function. Acta Biochim., Pol. 50: 1245–1256.
23. Panahi, B., Moshtaghi, N., Torktaz, I., Panahi, A., & Roy, S. (2012). Homology modeling and structural analysis of NHX antiporter of Leptochloa fusca (L.). Journal of Proteomics and Bioinformatics, 5(9): 214–216.
24. Petersen, T.N., Brunak, S., Von Heijne, G., Nielsen, H., 2011. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods, 8: 785–786.
25. Price, M.N., Dehal, P.S., Arkin, A.P., 2009. Fasttree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol., 26: 1641–1650.
26. Reddy, N.R., Sathe, S.K., Salunkhe, D.K., 1982. Phytates in legumes and cereals. Adv. Food Res., 28: 1-92.
27. Richardson, A.E., Hadobas, P.A., Hayes, J.E., 2001. Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J., 25: 641–649.
28. Sasso, S., Stibor, H., Mittag, M., Grossman, A.R., 2018. The natural history of model organisms from molecular manipulation of domesticated chlamydomonas reinhardtii to survival in nature. Elife, 7:e39233.
29 Secco, D., Bouain, N., Rouached, A., Prom-u-thai, C., Hanin, M., Pandey, A.K., Rouached, H., 2017. Phosphate, phytate and phytases in plants: from fundamental knowledge gained in Arabidopsis to potential biotechnological applications in wheat. Crit. Rev. Biotechnol., 37: 898–910.
30. Singh, B., Kunze, G., Satyanarayana, T., 2011. Developments in biochemical aspects and biotechnological applications of microbial phytases. Biotechnol. Mol. Biol. Rev., 6: 69–87.
31. Singh, B., Satyanarayana, T., 2015. Fungal phytases: Characteristics and amelioration of nutritional quality and growth of non-ruminants. J. Anim. Physiol. Anim. Nutr. (Berl)., 99: 646–660.
32. Strenkert, D., Schmollinger, S., Gallaher, S.D., Salomé, P.A., Purvine, S.O., Nicora, C.D., Mettler-Altmann, T., Soubeyrand, E., Weber, A.P.M., Lipton, M.S., Basset, G.J., Merchant, S.S., 2019. Multiomics resolution of molecular events during a day in the life of Chlamydomonas. Proc. Natl. Acad. Sci. U. S. A., 116: 2374–2383.
33. Tardif, M., Atteia, A., Specht, M., Cogne, G., Rolland, N., Brugière, S., Hippler, M., Ferro, M., Bruley, C., Peltier, G., Vallon, O., Cournac, L., 2012. Predalgo: A new subcellular localization prediction tool dedicated to green algae. Mol. Biol. Evol., 29: 3625–3639.
34. Vohra, A., Satyanarayana, T., 2003. Phytases: Microbial sources, production, purification, and potential biotechnological applications. Crit. Rev. Biotechnol., 23: 29–60.
35. Yao, M.Z., Zhang, Y.H., Lu, W.L., Hu, M.Q., Wang, W., Liang, A.H., 2012. Phytases: Crystal structures, protein engineering and potential biotechnological applications. J. Appl. Microbiol., 112: 1–14.