1. Antonyuk, S.V., Olczak, M., Olczak, T., Ciuraszkiewicz, J., Strange, R.W., 2014. The structure of a purple acid phosphatase involved in plant growth and pathogen defence exhibits a novel immunoglobulin-like fold. IUCrJ, 1: 101–109.
2. Bajhaiya, A.K., Dean, A.P., Zeef, L.A.H., Webster, R.E., Pittman, J.K., 2016. PSR1 is a global transcriptional regulator of phosphorus deficiency responses and carbon storage metabolism in Chlamydomonas reinhardtii. Plant Physiol.. 170: 1216–1234.
3. Bosch, J., Paige, M.H., Vaidya, A.B., Bergman, L.W., Hol, W.G.J., 2012. Crystal structure of GAP50, the anchor of the invasion machinery in the inner membrane complex of Plasmodium falciparum. J. Struct. Biol., 178: 61–73.
4. Chang, C.W., Moseley, J.L., Wykoff, D., Grossman, A.R., 2005. The LPB1 gene is important for acclimation of Chlamydomonas reinhardtii to phosphorus and sulfur deprivation. Plant Physiol., 138: 319–329.
5. Dermol, U., Janardan, V., Tyagi, R., Visweswariah, S.S., Podobnik, M., 2011. Unique utilization of a phosphoprotein phosphatase fold by a mammalian phosphodiesterase associated with WAGR syndrome. J. Mol. Biol., 412: 481–494.
6. Dionisio, G., Madsen, C.K., Holm, P.B., Welinder, K.G., Jørgensen, M., Stoger, E., Arcalis, E., Brinch-Pedersen, H., 2011. Cloning and characterization of purple acid phosphatase phytases from wheat, barley, maize, and rice. Plant Physiol., 156: 1087–1100.
7. Gorman, D.S., Levine, R.P., 1965. Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc. Natl. Acad. Sci. U. S. A., 54: 1665–1669.
8. Grossman, A.R., Aksoy, M., 2015. Algae in a Phosphorus-Limited Landscape, in: Phosphorus Metabolism in Plants.
9. Harris, E.H., 2001. Chlamydomonas as a model organism. Annu. Rev. Plant Biol., 52: 363–406.
10. Hayes, J.E., Richardson, A.E., Simpson, R.J., 1999. Phytase and acid phosphatase activities in extracts from roots of temperate pasture grass and legume seedlings. Aust. J. Plant Physiol., 26: 801–809.
11. Henrik Nielsen, 2017. Predicting Secretory Proteins with SignalP, in: Methods in Molecular Biology., 1611: 59–73.
12. Huerta-Cepas, J., Serra, F., Bork, P., 2016. ETE 3: Reconstruction, Analysis, and Visualization of Phylogenomic Data. Mol. Biol. Evol., 33: 1635–1638.
13. Jing, M., Zhao, S., Rogiewicz, A., Slominski, B.A., House, J.D., 2021. Effects of phytase supplementation on production performance, egg and bone quality, plasma biochemistry and mineral excretion of layers fed varying levels of phosphorus. Animal, 15: 100010.
14. Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N., Sternberg, M.J.E., 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc., 10: 845–858.
15. Klabunde, T., Sträter, N., Fröhlich, R., Witzel, H., Krebs, B., 1996. Mechanism of Fe(III)-Zn(II) purple acid phosphatase based on crystal structures. J. Mol. Biol., 259: 737–748.
16. Lei, X.G., Weaver, J.D., Mullaney, E., Ullah, A.H., Azain, M.J., 2013. Phytase, a new life for an “old” enzyme. Annu. Rev. Anim. Biosci., 1: 283–309.
17. Letunic, I., Bork, P., 2018. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res., 46: D493–D496.
18. Lim, S.M. e., Yeung, K., Trésaugues, L., Ling, T.H. sian., Nordlund, P., 2016. The structure and catalytic mechanism of human sphingomyelin phosphodiesterase like 3a--an acid sphingomyelinase homologue with a novel nucleotide hydrolase activity. FEBS J., 283: 1107–1123.
19. Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G.A., Sonnhammer, E.L.L., Tosatto, S.C.E., Paladin, L., Raj, S., Richardson, L.J., Finn, R.D., Bateman, A., 2021. Pfam: The protein families database in 2021. Nucleic Acids Res., 49(D1): D412–D419.
20. Moseley, J.L., Gonzalez-Ballester, D., Pootakham, W., Bailey, S., Grossman, A.R., 2009. Genetic interactions between regulators chlamydomonas phosphorus and sulfur deprivation responses. Genetics, 181: 889–905.
21. Mullaney, E.J., Ullah, A.H.J., 2003. The term phytase comprises several different classes of enzymes. Biochem. Biophys. Res. Commun., 312: 179–184.
22. Olczak, M., Morawiecka, B., Wa̧torek, W., 2003. Plant purple acid phosphatases - Genes, structures and biological function. Acta Biochim., Pol. 50: 1245–1256.
23. Panahi, B., Moshtaghi, N., Torktaz, I., Panahi, A., & Roy, S. (2012). Homology modeling and structural analysis of NHX antiporter of Leptochloa fusca (L.). Journal of Proteomics and Bioinformatics, 5(9): 214–216.
24. Petersen, T.N., Brunak, S., Von Heijne, G., Nielsen, H., 2011. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods, 8: 785–786.
25. Price, M.N., Dehal, P.S., Arkin, A.P., 2009. Fasttree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol., 26: 1641–1650.
26. Reddy, N.R., Sathe, S.K., Salunkhe, D.K., 1982. Phytates in legumes and cereals. Adv. Food Res., 28: 1-92.
27. Richardson, A.E., Hadobas, P.A., Hayes, J.E., 2001. Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J., 25: 641–649.
28. Sasso, S., Stibor, H., Mittag, M., Grossman, A.R., 2018. The natural history of model organisms from molecular manipulation of domesticated chlamydomonas reinhardtii to survival in nature. Elife, 7:e39233.
29 Secco, D., Bouain, N., Rouached, A., Prom-u-thai, C., Hanin, M., Pandey, A.K., Rouached, H., 2017. Phosphate, phytate and phytases in plants: from fundamental knowledge gained in Arabidopsis to potential biotechnological applications in wheat. Crit. Rev. Biotechnol., 37: 898–910.
30. Singh, B., Kunze, G., Satyanarayana, T., 2011. Developments in biochemical aspects and biotechnological applications of microbial phytases. Biotechnol. Mol. Biol. Rev., 6: 69–87.
31. Singh, B., Satyanarayana, T., 2015. Fungal phytases: Characteristics and amelioration of nutritional quality and growth of non-ruminants. J. Anim. Physiol. Anim. Nutr. (Berl)., 99: 646–660.
32. Strenkert, D., Schmollinger, S., Gallaher, S.D., Salomé, P.A., Purvine, S.O., Nicora, C.D., Mettler-Altmann, T., Soubeyrand, E., Weber, A.P.M., Lipton, M.S., Basset, G.J., Merchant, S.S., 2019. Multiomics resolution of molecular events during a day in the life of Chlamydomonas. Proc. Natl. Acad. Sci. U. S. A., 116: 2374–2383.
33. Tardif, M., Atteia, A., Specht, M., Cogne, G., Rolland, N., Brugière, S., Hippler, M., Ferro, M., Bruley, C., Peltier, G., Vallon, O., Cournac, L., 2012. Predalgo: A new subcellular localization prediction tool dedicated to green algae. Mol. Biol. Evol., 29: 3625–3639.
34. Vohra, A., Satyanarayana, T., 2003. Phytases: Microbial sources, production, purification, and potential biotechnological applications. Crit. Rev. Biotechnol., 23: 29–60.
35. Yao, M.Z., Zhang, Y.H., Lu, W.L., Hu, M.Q., Wang, W., Liang, A.H., 2012. Phytases: Crystal structures, protein engineering and potential biotechnological applications. J. Appl. Microbiol., 112: 1–14.