Growth and Carbohydrate Compositions of Three Gossypium Species Inoculated with Rhizophagus intraradices under Salinity Stress

Document Type : Original Research

Authors
1 Department of Biology, Faculty of Science, Islamic Azad University, Gorgan Branch, Gorgn, Islamic Republic of Iran.
2 Department of Agronomy, Cotton Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Islamic Republic of Iran.
3 Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Islamic Republic of Iran.
Abstract
Expansion of salt stress in cultivable fields prevents plant physiological functions and reduces crop yield. Arbuscular Mycorrhizal Fungi (AMF), as a bio-amelioration of salt stress, protects cellular osmosis via disaccharide and polysaccharide metabolism changes. In this study, three Gossypium species (i.e., G. hirsutum, G. barbadense, and G. herbaceum) colonized with Rhizophagus intraradices [with AMF and without AMF] were cultivated under saline irrigation treatments (ECe< 4 Ds m-1= S0, 8-9= S1, and 12-13= S2) as a factorial experiment. Salinity treatments were initiated at flowering. Generally, according to physiological traits, [+AMF] colonized with G. barbadense was more tolerant in exposure to 12-13 dS m-1 salinity, while G. hirsutum with [+AMF] was just tolerant until 8-9 dS m-1. This is because, the highest and the least leaf area were observed in G. barbadense [+AMF] under 8-9 and 12-13 dS m-1, respectively. In 12-13 dS m-1, the highest root volume, root dry weight, seed weight, and fiber weight were obtained in G. barbadense [+AMF]. Moreover, the highest sugar content in root and leaves and the highest starch content of root, leaves, and seed cotyledon were observed in G. barbadense [+AMF] under 12-13 dS m-1 treatment. Under 8-9 dS.m-1 salinity, the highest starch, Sucrose Phosphate Synthase (SPS) and Sucrose Phosphatase (SP) enzyme activities were in roots of G. barbadense [+AMF]. The present study suggests that despite dramatic physiological alterations under high-salinity in comparison with mild-salinity, AMF and G. barbadense showed the best symbiotic performance under 12-13 dS m-1.

Keywords

Subjects


1. Abdel-Rahman, S.S.A., Abdel-kader, A.A.S. and Khalil, S.E. 2011. Response of three sweet basil cultivars to inoculation with bacillus subtilis and arbuscular mycorrhizal fungi under salt stress condition. Nat.Sci., 9(6): 93-111.
2. Ahmad, A., Ismun, A. and Taib, M. 2017. Effects of salinity stress on carbohydrate metabolism in Cryptocoryne elliptica cultures. J. Trop. Plant Physiol. 9: 1-13.
3. Asmelash, F., Bekele, T. and Birhane, E. 2016. The potential role of arbuscular mycorrhizal fungi in the restoration of degraded lands. Front. Microbiol., 7: 1095.
4. Augé, R.M., Toler, H.D. and Saxton, A.M., 2015. Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza, 25(1): 13-24.
5. Bayani, R., Saateyi, A. and Faghani, E. 2016. Some root traits of barley (Hordeum vulgare L.) as affected by mycorrhizal symbiosis under drought stress. J. Crop Prod. Process., 6(19): 125-135.
6. Bücking, H., Liepold, E. and Ambilwade, P. 2012. The role of the mycorrhizal symbiosis in nutrient uptake of plants and the regulatory mechanisms underlying these transport processes. Plant Sci. 4: 108-132.
7. Carvalho, L.M., Correia, P.M. and Martins-Loução , M.A., 2004. Arbuscular mycorrhizal fungal propagules in a salt marsh. Mycorrhiza. 14: 165-170.
8. Casey, E., Mosier, N.S., Adamec, J., Stockdale, Z., Ho, N. and Sedlak, M. 2013. Effect of salts on the co-fermentation of glucose and xylose by a genetically engineered strain of Saccharomyces cerevisiae. Biotechnol. Biofuels., 6: 83.
9. Chen, S., Hajirezaei, M. and Bornke, F. 2005. Differential expression of sucrose-phosphate synthase isoenzymes in tobacco reflects their functional specialization during dark-governed starch mobilization in source leaves. Plant Physiol., 139(3): 1163-1174.
10. Dai, J.L., Duan, L.S. and Dong, H.Z. 2014. Improved nutrient uptake enhances cotton growth and salinity tolerance in saline media. J. Plant Nutr., 37(8): 1269-1286.
11. Dal Santo, S., Stampfl, H., Krasensky, J., Kempa, S., Gibon, Y., Petutschnig, E., Rozhon, W., Heuck, A., Clausen, T., Jonak, C. 2012. Stress-induced GSK3 regulates the redox stress response by phosphorylating glucose-6-phosphate dehydrogenase in Arabidopsis. Plant Cell, 24(8): 3380–3392.
12. Desingh, R. and Kanagaraj, G. 2007. Influence of salinity stress on photosynthesis and antioxidative systems in two cotton varieties. Gen. Appl. Plant Physiol., 33(3-4): 221-234.
13. El-Shourbagy, M.N. and Kishk, H.T. 1975. Sodium chloride effects on the sugar metabolism of several plants. Phyton, 17: 101-108.
14. Evelin, H., Kapoor, R. and Giri, B. 2009. Arbuscular mycorrhizal fungi inalleviation of salt stress, a review. Ann. Bot., 104(7): 1263-1280.
15. Feng, G., Zhang, F.S., Li, X.L., Tian, C.Y., Tang, C. and Rengel, Z. 2002. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza, 12(4): 185-190.
16. Galmés, J., Medrano, H. and Flexas, J. 2007. Photosynthetic limitations in response to water stress and recovery in mediterranean plants with different growth forms. New Phytol., 175: 81-93.
17. Gallagher, J.P., Grover, C.E., Rex, K., Moran, M., and Wendel, J.F. 2017. A new species of cotton from wake atoll, Gossypium stephensii (Malvaceae). Syst. Bot., 42: 115-123.
18. Gamalero, E., Lingua, G., Berta, G., and Glick, B.R. 2009. Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can. J. Microbiol., 55(5): 501-514.
19. Garg, N. and Bharti, A. 2018. Salicylic acid improves arbuscular mycorrhizal symbiosis, and chickpea growth and yield by modulating carbohydrate metabolism under salt stress. Mycorrhiza, 28: 727-746.
20. Geigenberger, P., Reimholz, R., Deiting, U., Sonnewald, U. and Stitt, M. 1999. Decreased expression of sucrose-phosphate synthasestrongly inhibits the water stress-induced synthesis of sucrose ingrowing potato tubers. Plant J., l19(2): 119-129.
21. Geigenberger, P., Stitt, M., and Fernie, A.R. 2004. Metabolic control analysis and regulation of the conversion of sucrose to starch in growing potato tubers. Plant Cell Environ., 27: 655-673
22. Grover, C.E., Zhu, X., Grupp, K.K., Jareczek, J.J., Gallagher, J.P., Szadkowski, E., Seijo, J.G. and Wendel, J.F. 2015. Molecular confirmation of species status for the allopolyploid cotton species, Gossypium ekmanianum Wittmack. Genet. Resour. Crop Evol., 62: 103-114.
23. Guo, Q., Liu, L. and Barkla, B.J. 2019. Membrane Lipid Remodeling in Response to Salinity. Int. J. Mol. Sci., 20(17): 4264.
24. Gutjahr, C. 2014. Phytohormone signaling in arbuscular mycorrhiza development. Curr. Opin. Plant Biol. 20: 26-34.
25. Halford, N.G., Curtis, T.Y., Muttucumaru, N., Postles, J. and Mottram, D.S. 2011. Sugars in crop plants. Ann. Appl. Biol., 158: 1–25.
26. Hubbard, N.L., Huber, S.C. and Pharr, D.M. 1989. Sucrose phosphate synthase and acid invertase as determinants of sucrose concentration in developing muskmelon (Cucumis melo L.) fruits. Plant Physiol., 91(4): 1527-1534.
27. Hudson, D., Pan, S., Mutuc, M. 2009. Global Cotton Baseline 2008-09 - 2018/19. RePEc.. Project: Agricultural (Cotton) Policy. Cotton Economics Research Institute Department of Agricultural and Applied Economics Texas Tech University, U.S.A: 38.
28. Ibrahim, A.H., Abdel-Fattah, G.M., Eman, F.M.,Abd El-Aziz, M.H. and Shokr, A.E., 2011. Arbuscular mycorrhizal fungi and spermine alleviate the adverse effects of salinity stress on electrolyte leakage and productivity of wheat plants. New Phytol., 51: 261-276.
29. Johnson-Green, P.C., Kenkel, N.C. and Booth, T. 1995. The distribution and phenology of arbuscular mycorrhizae along an inland salinity gradient. Can. J. Bot., 73(9): 1318-1327.
30. Koyro, H.W. 1997. Ultrastructural and physiological changes in root cells of Sorghum plants (Sorghum bicolor× S. sudanensis cv. Sweet Sioux) induced by NaCl. J. Exp. Bot., 48(308): 693-706.
31. Kuo, T.M., VanMiddlesworth, J.F. and Wolf, W.J. 1988. Content of raffinose oligosaccharides and sucrose in various plant seeds. J. Agric. Food Chem., 36: 32-36.
32. Kulshrestha, S., Tyagi, P., Sindhi, V. and Yadavilli, K.S. 2013. Invertase and its applications – A brief review. J. Pharm. Res., 7(9): 792-797.
33. Langenkämper, G., Fung, R.W.M., Newcomb, R.D., Atkinson, R.G., Gardner, R.C. and MacRae, E.A. 2002. Sucrose phosphate synthase genes in plants belong to three different families. J. Mol. Evol., 54(3): 322-332.
34. Liu, Q., Llewellyn, D., Singh, S.P., Green, A.G. 2012. Cotton seed development: opportunities to add value to a byproduct of fiber production. In: “Cotton Flowering and Fruiting: The Cotton Foundation”, (Eds.): Oosterhuis, D.M. and Cothren, J.T., Cordova, Tennessee, U.S.A.
35. Lu, N., Zhou, X., Cui, M., Yu, M., Zhou, J. and Qin, Y. 2015. Colonization with arbuscular mycorrhizal fungi promotes the growth of Morus alba L. seedlings under greenhouse conditions. Forests, 6: 734-747.
36. Maas, E.V. 1990. Crop salt tolerance. In: “Agricultural salinity assessment and management”, (Eds.): Tanji K.K., ASCE Manual Reports on Engineering Practices, New York.
37. Maloney, V.J., Park, J.-Y., Unda, F. and Mansfield, S.D. 2015. Sucrose phosphate synthase and sucrose phosphate phosphatase interact in planta and promote plant growth and biomass accumulation. J. Exp. Bot., 66(14): 4383-4394.
38. Miron, D. and Schaffer, A.A. 1991. Sucrose phosphate synthase, sucrose synthase and invertase activities in developing fruit of Lycopersicon esculentum Mill and the sucrose accumulating Lycopersicon hirsutum Humb. and Bonpl. Plant Physiol., 95(2): 623-627.
39. Moing, A., Maucourt, M., Renaud, C., Gaudillere, M., Brouquisse, R., Lebouteiller, B., Gousset-Dupont, A., Vidal, J., Granot, D., Denoyes-Rothan, B., Lerceteau-Kohler, E. and Rolin, D., 2004. Quantitative metabolic profiling by 1-dimensional 1H NMR analyses: application to plant genetics and functional genomics. Funct. Plant Biol., 31(9): 889-902.

40. Moreira Salgado, F.H., Sousa Moreira, F.M., Siqueira, J.O. Barbosa, R.H., Paulino, H.B., Carbone Carneiro, M.A. 2017. Arbuscular mycorrhizal fungi and colonization stimulant in cotton and maize. Cienc. Rural, 47(6).
41. Nehls, U., Mikolajewski, S., Magel, E. and Hampp, R. 2001. Carbohydrate metabolism in ectomycorrhizas: gene expression, monosaccharide transport and metabolic control. New Phytol., 150(3): 533-541.
42. Philips, J.M. and Hayaman, D.S. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Brit. Mycol. Soc., 55(1): 158-161.
43. Pluskota, W.E., Szablińska, J., Obendorf, R.L., Górecki, R.J. and Lahuta, L.B. 2015. Osmotic stress induces genes, enzymes and accumulation of galactinol, raffinose and stachyose in seedlings of pea (Pisum sativum L.). Acta Physiol. Plant., 37(156).
44. Porcel, R., Aroca, R. and Ruiz-Lozano, J.M. 2012. Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agronomy for Sustainable Development, 32: 181-200.
45. Porcel, R. and Ruiz-Lozano, J.M. 2004. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J. Exp. Bot., 55(403): 1743-1750.
46. Qadir, M. and Shams, M. 2008. Some agronomic and physiological aspects of salt tolerance in cotton (Gossypium hirsutum L.). J. Agron. Crop Sci., 179(2): 101-106.
47. Ruan, S., Xue, Q. and Tylkowska, K. 2002. The influence of priming on germination of rice (Oryza sativa L.) seeds and seedling emergence and performance in flooded soil. Seed Sci. Technol., 30(1): 61-67.
48. Razzouk, S. and Whittington, W.J. 1991. Effects of salinity on cotton yield and quality. Field Crops Res., 26(3-4): 305-314.
49. Rao, P. and Pattabiraman, T.N. 1989. Reevaluation of the phenol-sulfuric acid reaction for the estimation of hexoses and pentoses. Analytical Biochemistry, 18(1): 18-22.
50. Ruiz-Lozano, J.M., Azcon, R. and Palma, J.M. 1996. Superoxide dismutase activity in arbuscular-mycorrhizal Lactuca sativa L. plants subjected to drought stress. New Phytol., 134: 327-333.
51. Shi, G., Liu, Y., Johnson, N.C., Olsson, P.A., Mao, L., Cheng, G., Jiang, S., An, L., Du, G. and Feng, H. 2014. Interactive influence of light intensity and soil fertility on root-associated arbuscular mycorrhizal fungi. Plant Soil, 378: 173-188.
52. Slewinski, T.L. 2011. Diverse functional roles of monosaccharide transporters and their homologs in vascular plants: a physiological perspective. Mol. Plant, 4(4): 641-662.
53. Stitt, M., Wilke, I., Feil, R. and Heldt, H.W. 1988. Coarse control of sucrose-phosphate synthase in leaves: Alterations of the kinetic properties in response to the rate of photosynthesis and the accumulation of sucrose. Planta, 174: 217-230.
54. Ulloa, M., Hulse-Kemp, A.M., De Santiago, L.M., Stelly, D.M. and Burke, J.J. 2017. Insights into upland cotton (Gossypium hirsutum L.) genetic recombination rased on 3h-density single-nucleotide polymorphism and a consensus map developed independently with common parents. Genom. Insights, 10: 1-15.
55. Van der Heijden, M.G.A., Klironomos, J.N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T., Wiemken, A. and Sanders, I.R. 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396: 69-72.
56. Viola, R., Roberts, A.G., Haupt, S., Gazzani, S., Hancock, R.D., Marmiroli, N., Machray, G.C. and Oparka, K.J. 2001.Tuberization in potato involves a switch from apoplastic to symplastic phloem unloading. Plant Cell, 13(2): 385-98.
57. Van Handel, E. 1968. Direct microdetermination of sucrose. Anal. Biochem., 22(2): 280-283.
58. Wang, Y., Chen, J., Feng, J., Qin, Q. and Huang, J. 2015. Overexpression of a loquat (Eriobotrya japonicaLindl.) vacuolar invertase affects sucrose levels and growth. Plant Cell Tissue Organ Cult., 123: 99-108.
59. Wei, Y., Xu, Y., Lu, P., Wang, X., Li, Z., Cai, X., Zhou, Z., Wang, Y., Zhang, Z., Lin, Z., Liu, F., and Wang, K. 2017. Salt stress responsiveness of a wild cotton species (Gossypium klotzschianum) based on transcriptomic analysis. PLoS One, 12(5): e0178313.
60. Weiß, K. and Alt, M., 2017. Determination of single sugars, including inulin, in plants and feed materials by high-performance liquid chromatography and refraction index detection. Ferment., 3(3): 36.
61. Whittaker, R.J., Ladle, R.J., Araujo, M.B., Fernandez-Palacios, J.M., Delgado, J. and Arevalo, J.R. 2007. The island immaturity–speciation pulse model of island evolution: an alte-native to the ‘‘diversity begets diversity’’ model. Ecog., 30: 327-321.
62. Whittaker, A., Martinelli, T., Farrant, J.M., Bochichio, A. & Vazzana, C. 2007. Sucrose phosphate synthase activity and the co-ordination of carbon partitioning during sucrose and amino acid accumulation in desiccation-tolerant leaf material of the C4 resurrection plant Sporobolus stapfianus during dehydration. J. Exp. Bot, 58: 3775-3787.
63. Wu, H.-H., Zou, Y.-N., Rahman, M.M., Ni, Q.-D., and Wu, Q.-S. 2017. Mycorrhizas alter sucrose and proline metabolism in trifoliate orange exposed to drought stress. Sci. Rep., 7: 42389.
64. Yang, C.W., Xu, H.-H., Wang, L.-L., Liu, J., Shi, D.C. and Wang, D.-L. 2009. Comparative effects of salt-stress and alkali-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants. Photosynthetica, 47(1): 79-86.
65. Yang, Y., Gao, T., Xu, M., Dong, J., Li, H., Wang, P., Li, G., Guo, T., Kang, G. and Wang, Y. 2017. Functional analysis of a wheat AGPase plastidial small subunit with a truncated transit peptide. Molecules, 22(3): 386.
66. Yfoulis, A. and Fasoulas, A. 1973. Interactions of genotype and temperature on cotton boll period and their implication in breeding. Exp. Agric., 9(3): 193-201.
67. Zak, J.C., McMichael, B., Dhillion, S. and Friese, C. 1998. Arbuscular mycorrhizal colonization dynamics of cotton (Gossypium hirsutum L) growing under several production systems on the southern high plains, Texas. Agric. Ecosyst. Environ., 68(3): 245-254.
68. Zhang, H., Wu, X., Li, G. and Qin, P. 2011. Interactions between arbuscular mycorrhizal fungi and phosphate-solubilizing fungus (Mortierella sp.) and their effects on Kostelelzkya virginica growth and enzyme activities of rhizosphere and bulk soils at different salinities. Biol. Fertil. Soils, 47: 543.
69. Zhu, Q., Schmidt, J.P. and Bryant, R.B. 2015. Maize (Zea mays L.) yield response to nitrogen as influenced by spatio-temporal variations of soil-water-topography dynamics. Soil Tillage Res., 146(B): 174-183.
70. Zhu, X. D., Wang, M. Q., Li, X. P., Jiu, S. T., Wang, C., and Fang, J. G. 2017. Genome-wide analysis of the sucrose synthase gene family in grape (Vitis vinifera): structure, evolution, and expression profiles. Genes, 8(4):1-25. doi: 10.3390/genes8040111
71. Zhu, X., Cao, Q., Sun, L., Yang, X., Yang, W. and Zhang, H. 2018. Stomatal conductance and morphology of Arbuscular Mycorrhizal wheat plants response to elevated CO2 and NaCl stress. Front. Plant Sci., 9: 1363.