Effects of Mycorrhizal (Rhizophagus irregularis) and Trichoderma Harzianum Fungus on Strawberry Quality under Different Selenium Levels

Document Type : Original Research

Authors
1 Department of Horticultural Science, Science and Research Branch, Islamic Azad University, Tehran, Islamic Republic of Iran.
2 Faculty of Agricultural Sciences, Shahed University, Tehran, Islamic Republic of Iran.
3 Faculty of Agricultural Sciences, Shahed University, Tehran, Iran
4 Department of Plant Protection, Science and Research Branch, Islamic Azad University, Tehran, Islamic Republic of Iran.
Abstract
The present study aimed at assessment of the beneficial role of fungal inoculation [Arbuscular Mycorrhizal Fungi (AMF) and Trichoderma harzianum] and Selenium (Se) treatments (0.0, 0.5, 1.0, 2.0 and 4.0 mg kg-1 soil) on quality of strawberry cv. Camarosa by an emphasis on physiochemical characteristics. Fungal inoculation and Se treatment improved the fruit fresh and dry weights and fruit length, which was related to their capacity to enhance photosynthetic pigments (chlorophylls and carotenoid). Leaves protein, N, and P content as well as fruit total phenolic content and anthocyanin concentration were significantly affected by AMF and T. harzianum inoculation. It was found that strawberry plants inoculated with T. harzianum under 1.0 mg kg-1 soil of Se treatment had better leaves and fruit physicochemical characteristics as compared with other treatments. Overall, inoculation of T. harzianum along with 1.0 mg kg-1 soil of Se treatment could be recommended as an environmentally sustainable approach for improvement of the quality of strawberry cv. Camarosa fruit.

Keywords

Subjects


Ahmed, H. K. 2010. Differences between some plants in selenium accumula‌tion from supplementation soils with selenium. Agric. Biol. J. N. Am., 1: 1050-1056.
Akladious, S. A. and Abbas, S. M. 2014. Application of Trichoderma harziunum T22 as a biofertilizer potential maize growth. J Plant Nutr., 37(1): 30-49.
Al-Arjani, A. B. F., Hashem, A. and Abd_Allah, E. F .2020. Arbuscular mycorrhizal fungi modulates dynamics tolerance expression to mitigate drought stress in Ephedra foliata Boiss. Saudi J. Biol. Sci., 27(1): 380-394.
Ansari, M. H., Hashemabadi, D., Mahdavi, M., Kaviani, B. 2018. The role of Pseudomonas strains and arbuscular mycorrhiza fungi as organic phosphate-solubilizing in the yield and quality improvement of strawberry (Fragaria × ananassa Duch., cv. Selva) fruit. Acta Sci. Pol. Hortorum Cultus, 17(4): 93–107.
Arcand, M. M. and Schneider, K. D. 2006. Plant- and microbial-based mechanisms to improve the agronomic effectiveness of phosphate rock: a review. An. Acad. Bras. Ciênc., 78(4): 791-807.
Baslam, M., Garmendia, I. and Goicoechea, N. 2013. Enhanced accumulation of vitamins, nutraceuticals and minerals in lettuces associated with arbuscular mycorrhizal fungi (AMF): A question of interest for both vegetables and humans. Agric., 3: 188-209.
Berruti, A., Lumini, E., Balestrini, R. and Bianciotto, V. 2016. Arbuscular Mycorrhizal Fungi as Natural Biofertilizers: Let’s Benefit from Past Successes. Front. Microbiol., 6: 1559.
Boldren, P. F., Dd Figueiredo, M. A., Yang, Y., Luo, H., Giri, S., Hart, J. J., Faquin, V., Guilherme, L. R. G., Thanhauser, T. W. and Li, L. 2016: Selenium promotes sulfur accumulation and plant growth in wheat (Triticum aestivum). Physiol. Plant., 158: 80-91.
Bona, E., Lingua, G., Manassero, P., Cantamessa, S., Marsano, F., Todeschini, V., Copetta, A., D’Agostino, G., Massa, N., Avidano, L., Gamalero, E. and Berta, G. 2015. AM fungi and PGP pseudomonads increase flowering, fruit production, and vitamin content in strawberry grown at low nitrogen and phosphorus levels. Mycorrhiza, 25: 181-193
Bradford, M. M. 1976. A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem.,72: 248-254.
Castellanos-Morales, V., Villegas, J., Wendelin, S., Vierheilig, H., Eder, R. and Cárdenas-Navarro, R. 2010. Root colonisation by the arbuscular mycorrhizal fungus Glomus intraradices alters the quality of strawberry fruits (Fragaria × ananassa Duch.) at different nitrogen levels. J. Sci. Food Agric., 90: 1774-1782.
Cecatto, A. P., Ruiz, F. M., Calvete, E. O., Martínez, J. and Palencia, P. 2016. Mycorrhizal inoculation affects the. Acta Sci. Agron., 38(2): 227-237.
Chauhan, S., Kumar, A., Mangla, C. and Aggarwal, A. 2010. Response of Strawberry plant (Fragaria ananassa Duch.) to inoculation with arbuscular mycorrhizal fungi and Trichoderma viride. J. Appl. Nat. Sci., 2(2): 213-218.
Chen, S., Zhao, H., Zou, C., Li, Y., Chen, Y., Wang, Z., Jiang, Y., Liu, A., Zhao, P., Wang, M. and Ahammed, G. J. 2017. Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Front. Microbiol., 8: 2516.
De Andrade, S. A. L., Domingues, A. P. and Mazzafera, P. 2015. Photosynthesis is induced in rice plants that associate with arbuscular mycorrhizal fungi and are grown under arsenate and arsenite stress. Chemosphere, 134: 141-149.
Debode, J., De Tender, C., Cremelie, P., Lee, A. S., Kyndt, T., Muylle, H., De Swaef, T. and Vandecasteele, B. 2018. Trichoderma-inoculated miscanthus straw can replace peat in strawberry cultivation, with beneficial effects on disease control. Front. Plant Sci., 9: 213.
Elkelish, A. A., Alhaithloul, H. A. S., Qari, S. H., Soliman, M.H. and Hasanuzzaman. M. 2020. Pretreatment with Trichoderma harzianum alleviates waterlogging-induced growth alterations in tomato seedlings by modulating physiological, biochemical, and molecular mechanisms. Environ. Exp. Bot., 171: 103946.
Fraceto, L. F., Maruyama, C. R., Guilger, M., Mishra, S., Keswani, C., Singh, H. B. and de Lima, R. 2018. Trichoderma harzianum based novel formulations: Potential applications for management of next-gen agricultural challenges. J. Chem. Technol. Biotechnol., 93(8): 2056-2063.
Germ, M., Kreft, I. and Osvald, J. 2005. Influence of UV-B exclusion and selenium treatment on photochemical efficiency of photosystem II, yield and respiratory potential in pumpkins (Cucurbita pepo L.). Plant Physiol. Bioch., 43: 445-448.
Hamilton, S.J. 2004. Review of selenium toxicity in the aquatic food chain. Sci. Total Environ., 326: 1-31.
Hiscox, J. D. and Israelstam, G. F. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Can. J. Bot., 57(12): 1332-1334.
Hussein, H. A. A., Darwesh, O. M. and Mekki, B. B. 2019. Environmentally friendly nano-selenium to improve antioxidant system and growth of groundnut cultivars under sandy soil conditions. Biocatal. Agric. Biotechnol., 18: 101080.
Kalantari, M. R., Abdossi, V., Mortazaeinezhad, F., Golparvar, A. R., and Shahshahan, Z. 2020. Foliar application of ethinyl estradiol and progesterone affects morphological and fruit quality characteristics of strawberry cv. Camarosa. Hortic. Sci. Technol., 38(2): 146-157.
Kurokura, T., Hiraide, S., Shimamura, Y. and Yamane, K. 2017. PGPR improves yield of strawberry species under less-fertilized conditions environ. Control Biol., 55(3): 121-128.
Lingua, G., Bona, E., Manassero, P, Marsano, F., Todeschini, V., Cantamessa, S., Copetta, A., D’Agostino, G., Gamalero, E. and Berta, G. 2013. Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads increases anthocyanin concentration in strawberry fruits (Fragaria × ananassa var. Selva) in conditions of reduced fertilization. Int. J. Mol. Sci., 14: 16207-16225.
Liu, D., Li, H., Wang, Y., Ying, Z., Bian, Z., Zhu, W., Liu, W., Yang, L. and Jiang, D. 2017. How exogenous selenium affects anthocyanin accumulation and biosynthesis-related gene expression in purple lettuce. Pol. J. Environ. Stud., 26(2): 717-722.
López-Bucio, J., Pelagio-Flores, R. and Herrera-Estrella, A. 2015. Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Sci. Hortic., 196: 109-123.
Mechora, Š., Torre,s D. P., Bruns, R. E., Škof, M. and Ugrinović, K. 2017. Effect of selenium treated broccoli on herbivory and oviposition preferences of Delia radicum and Phyllotreta spp. Sci. Hortic., 225: 445-453.
Mikiciuk, G., Sas-Paszt, L., Mikiciuk, M., Derkowska, E., Trzciński, P., Głuszek, S., Lisek, A., Wera-Bryl, S. and Rudnicka, J. 2019. Mycorrhizal frequency, physiological parameters, and yield of strawberry plants inoculated with endomycorrhizal fungi and rhizosphere bacteria. Mycorrhiza, 29: 489-501.
Narváez-Ortiz, W. A., Martínez-Hernández, M., Fuentes-Lara, L. O., Benavides-Mendoza, A., Valenzuela-García, J. R. and González-Fuentes, J. A. 2018. Effect of selenium application on mineral macro- and micronutrients and antioxidant status in strawberries. J. Appl. Bot. Food Qual., 91: 321-331.
Pilon-Smits, E. A. H. 2015. Selenium in plants. In: Luttge, U., Beyschlag, W. (Eds.), Progress in Botany. Springer International Publishing, Switzerland, pp. 93–107.
Ramos, S. J., Faquin, V., Guilherme, L. R. G., Castro, E., Ávila, F. W., Carvalho, G. S., Bastos, C. E. A. and Olivera, C. 2010: Selenium bio-fortification and antioxidant activity in lettuce plants fed with selenate and selenite. Plant Soil Env. 56: 584-588.
Ryant, P., Antošovský, J., Adam, V., Ducsay, L., Škarpa, P. and Sapáková, E. 2020. The importance of selenium in fruit nutrition. In: Fruit Crops Diagnosis and Management of Nutrient Constraints, Publisher: Elsevier, pp. 241-254.
Shiri, M. A., Ghasemnezhad, M., Fatahi Moghadam, J. and Ebrahimi, R. 2016. Efficiency of CaCl2 spray at different fruit development stages on the fruit mineral nutrient accumulation in ‘Hayward’ kiwifruit. J. Elementol., 21(1): 195-209.
Wagner, G. J. 1979. Content and vacuole/extra vacuole distribution of neutral sugars, free amino acids and anthocyanin in protoplast. Plant Physiol., 68: 88-93.
Waling, I., Van Vark, W., Houba, V. J. G. and Van der lee, J. J. 1989. Soil and plant analysis, a series of syllabi. Part 7. Plant analysis procedures. Wageningen Agriculture University.
Zahedi, S. M., Abdelrahman, M., Sadat Hosseini, M., Fahadi Hoveizeh, N. and Tran, L. S. P. 2019. Alleviation of the effect of salinity on growth and yield of strawberry by foliar spray of selenium-nanoparticles. Environ. Pollut., 253: 246-258.
Zhu, Z., Zhang, Y., Liu, J., Chen, Y. and Zhang, X. 2018. Exploring the effects of selenium treatment on the nutritional quality of tomato fruit. Food Chem., 252: 9-15.
Zhu, L., Wang, P., Zhang, W., Hui, F. and Chen, X. 2017. Effects of selenium application on nutrient uptake and nutritional quality of Codonopsis lanceolata. Sci. Hortic., 225: 574-580.