Effect of Processing Temperature on Meatballs under Dynamic Storage Condition Using Evaluation of the Arrhenius Model

Document Type : Original Research

Authors
Department of Food Technology, Faculty of Agriculture and Animal Science, University of Muhammadiyah Malang, East-Java 65144, Indonesia.
Abstract
Temperature treatment during the processing of meatballs is intended to prevent contamination. However, the heat treatment more frequently harms the food structure and loses major nutrients of meatballs. The Arrhenius model has been used to observe the heat-treatment effect on the degradation of food quality. The meatballs samples with edible coating were observed under dynamic temperature storage. The purpose of this study was to use the Arrhenius model to evaluate the heat-treatment relationship on the pH change during dynamic storage conditions: uncontrolled ranging 24 to 31°C, while the studied temperature treatment was ranging between 50 to 90°C for 15 minutes. The results showed an obvious relationship between the heat-treatment aspects for preventing bacteria growth during storage. The evaluation of the Arrhenius model result indicates peak nutrition loss phase transition was found in the temperature treatment range of 83 to 90°C, and the optimum heat-treatment level at 78°C or 148.15 kJ mol-1 for developing packaging or preservation methods.

Keywords

Subjects


Aberle, H. B. Forrest, J. C., E. D. Hendrick., M. D. Judge dan R. A. Merkel. 2001. Principle of Meat Science. 4th Edit. Kendal/Hunt Publishing, Iowa.
Akcan T, Estévez M, and Serdaroğlu M. (2017). Antioxidant protection of cooked meatballs during frozen storage by whey protein edible films with phytochemicals from Laurus nobilis L. and Salvia officinalis. LWT - Food Science and Technology 77: 323 – 331. DOI: 10.1016/j.lwt.2016.11.051.
Aksit M, Yalçin S, Ozkan S, Metin K, and Ozdemir D. (2006). Effects of temperature during rearing and crating on stress parameters and meat quality of broilers. Poultry Science 85 (11): 1867-1874. DOI: 10.1093/ps/85.11.1867.
AOAC. (2000). Official methods of analysis, 17th edn. Association of Official Analytical Chemists, WashingtonReturn to ref 2000 in article
AOAC. (2005). Official methods of analysis. 17th ed. Gaithersburg, Md.: AOAC International.
BPOM. (201). Peraturan kepala BPOM, tentang kriteria mikrobiologi dalam pangan olahan. Jakarta. (in Indonesia)
BPS. (2020). Statistik konsumsi bahan olahan pangan. Jakarta. (in Indonesia)
BSN. (2014). Standar dan kriteria Bakso No. 28853 SNI 3818-2014. Jakarta. (in Indonesia)
Chinma, C.E., Ariahu, C.C. & Alakali, J.S. (2015). Effect of temperature and relative humidity on the water vapour permeability and mechanical properties of cassava starch and soy protein concentrate based edible films. J Food Sci Technol 52, 2380–2386. DOI:10.1007/s13197-013-1227-0
Desvita, H.; Faisal, M.; Mahidin; Suhendrayatna. (2020). Preservation of Meatballs With Edible Coating Of Chitosan Dissolved In Rice Hull-Based Liquid Smoke. Heliyon Volume 6, Issue 10. DOI: 10.1016/j.heliyon.2020.e05228
England, E. M., Matarneh, S. K., Scheffler, T. L., & Gerrard, D. E. (2017). Perimortal muscle metabolism and its effects on meat quality. In New aspects of meat quality (pp. 63-89). Woodhead Publishing. DOI: 10.1016/B978-0-08-100593-4.00004-7
Firahmi, N., Dharmawati, S., & Aldrin, M. (2015). Sifat fisik dan organoleptik bakso yang dibuat dari daging sapi dengan lama pelayuan berbeda. Al Ulum Jurnal Sains Dan Teknologi, 1(1). (in Indonesia). DOI: 10.31602/ajst.v1i1.343
Flores, M., Mora, L., Reig, M., & Toldrá, F. (2019). Risk assessment of chemical substances of safety concern generated in processed meats. Food Science and Human Wellness, 8(3), 244-251.DOI: 10.1016/j.fshw.2019.07.003
Hassoun, A., Guðjónsdóttir, M., Prieto, M. A., Garcia-Oliveira, P., Simal-Gandara, J., Marini, F., & Biancolillo, A. (2020). Application of novel techniques for monitoring quality changes in meat and fish products during traditional processing processes: Reconciling novelty and tradition. Processes, 8(8), 988. DOI: 10.3390/pr8080988
Heck, R. T., Vendruscolo, R. G., de Araújo Etchepare, M., Cichoski, A. J., de Menezes, C. R., Barin, J. S., & Campagnol, P. C. B. (2017). Is it possible to produce a low-fat burger with a healthy n− 6/n− 3 PUFA ratio without affecting the technological and sensory properties?. Meat science, 130, 16-25. DOI: 10.1016/j.meatsci.2017.03.010
Heldman, D. R., Lund, D. B., & Sabliov, C. (Eds.). (2018). Handbook of food engineering. CRC press.
Huang L. (2011). A new mechanistic growth model for simultaneous determination of lag phase duration and exponential growth rate and a new Belehdradek-type model for evaluating the effect of temperature on growth rate. Food Microbiology 28:770–776. DOI: 10.1016/j.fm.2010.05.019
Huang L. (2019). Reconciliation of the D/z model and the Arrhenius model: The effect of temperature on inactivation rates of chemical compounds and microorganisms. Food Chemistry 295:499–504. DOI: 10.1016/j.foodchem.2019.05.150
İsmail O and Kocabay OG. (2018). Infrared and microwave drying of Rainbow trout: Drying kinetics and modeling. Turkish Journal of Fisheries and Aquatic Sciences 18 (5): 259–266. DOI: 10.4194/1303-2712-v20_9_05
Jaisan C, and Lee DS. (2017). A mathematical model to predict ripening degree of kimchi, a Korean fermented vegetable for meeting consumer preference and controlling shelf life on real-time basis. Food Packaging and Shelf Life 12: 23 – 27. DOI: 10.1016/j.fpsl.2017.02.002
Kuswandi B, and Nurfawaidi A. (2017). On-package dual sensors label based on pH indicators for real-time monitoring of beef freshness. Food Control (82): 91-100. DOI: 10.1016/j.foodcont.2017.06.028.
Lin N, Huang J, Chang PR, Feng L, and Yud J. (2011). Effect of polysaccharide nanocrystals on structure, properties, and drug release kinetics of alginate-based microspheres. Colloids and Surfaces B: Biointerface 85 (2): 270 – 279. DOI: 10.1016/j.colsurfb.2011.02.039
Malva, A. D., Albenzio, M., Santillo, A., Russo, D., Figliola, L., Caroprese, M., & Marino, R. (2018). Methods for extraction of muscle proteins from meat and fish using denaturing and nondenaturing solutions. Journal of Food Quality, 2018. DOI:10.1155/2018/8478471
Muhammad AI, Xiang Q, Liao X, Liu D and Ding T. (2018). Understanding the Impact of Nonthermal Plasma on Food Constituents and Microstructure—A Review. Food Bioprocess Technol 11: 463 – 486. DOI: 10.1007/s11947-017-2042-9
Mohebi, E., & Marquez, L. (2015). Intelligent packaging in meat industry: An overview of existing solutions. Journal of food science and technology, 52(7), 3947-3964. DOI: 10.1007/s13197-014-1588-z
Møretrø, T. and Langsrud, S. (2017), Residential Bacteria on Surfaces in the Food Industry and Their Implications for Food Safety and Quality. Comprehensive Reviews in Food Science and Food Safety, 16: 1022-1041. DOI:10.1111/1541-4337.12283
Olsvik O, Wasteson Y, Lund A, and Hornes E . (2009). Pathogenic Escherichia Coli Found in Food. International Journal of Food Microbiology 12: 103-114. DOI: 10.1016/0168-1605(91)90051-p
Pakpahan OP, Anggita C, Cahyanti S, Putri DN, and Monica SA. (2019). Performance edible coating containing oleoresin from ginger emprit (zingiber offivinale var. Amarum) and its effect on consumer preference properties. Carpathian journal of food science and technology 11 (3): 175 – 184. DOI: 10.34302/crpjfst/2019.11.3.15
Peleg M, Normand MD, and Corradini MG. (2012). The Arrhenius Equation Revisited. Critical Reviews in Food Science and Nutrition 52 (9): 830 – 851. DOI: 10.1080/10408398.2012.667460
Peleg M, Normand M.D, Goulette T.R. (2016). Calculating the degradation kinetic parameters of thiamine by the isothermal version of the endpoints method. Food Research International, 79 (73-80). DOI: 10.1016/j.foodres.2015.12.001
Pereira de Abreu, D. A., Cruz, J. M., & Paseiro Losada, P. (2012). Active and intelligent packaging for the food industry. Food Reviews International, 28(2), 146-187. DOI: 10.1080/87559129.2011.595022
Purnomo H and Rahardiyan D. (2008). Indonesian Traditional Meatball. International Food Research Journal 15(2): 101 – 108.
Rahman, M. S. (2020). Packaging as a preservation technique. In Handbook of food preservation (pp. 895-904). CRC Press.
Şen DB, and Kılıç B. (2021). Effects of edible coatings containing acai powder and matcha extracts on shelf life and quality parameters of cooked meatballs. Meat Sci. DOI: 10.1016/j.meatsci.2021.108547.
Serment-Moreno, V., Barbosa-Cánovas, G., Torres, J. A., & Welti-Chanes, J. (2014). High-pressure processing: kinetic models for microbial and enzyme inactivation. Food Engineering Reviews, 6(3), 56-88. DOI:10.1007/s12393-014-9075-x
Shukla V, Kandeepan G and Vishnuraj MR. (2015). Development of On-Package Indicator Sensor for Real-Time Monitoring of Buffalo Meat Quality During Refrigeration Storage. Food Analytical Methods 8:1591–1597. DOI: 10.1007/s12161-014-0066-6
SNI No: 3818:2014. (2014). Standar Mutu Bakso Daging
Soladoye, O. P., Juárez, M. L., Aalhus, J. L., Shand, P., & Estévez, M. (2015). Protein oxidation in processed meat: Mechanisms and potential implications on human health. Comprehensive Reviews in Food Science and Food Safety, 14(2), 106-122. DOI: 10.1111/1541-4337.12127
Song C, Liu J, Li J and Liu Q. (2016). Dual FITC lateral flow immunoassay for sensitive detection of Escherichia coli O157:H7 in food samples. Biosensors and Bioelectronics 85: 734 – 739. DOI: 10.1016/j.bios.2016.05.057
Stoops J, Ruyters S, Busschaert P, Spaepen R, Verreth C, Claes J, Lievens B, van Campenhout L. (2015). Bacterial community dynamics during cold storage of minced meat packaged under modified atmosphere and supplemented with different preservatives. Food Microbiol., 48 (192-199). DOI: 10.1016/j.fm.2014.12.012
Sukumaran AT, Holtcamp AJ, Englishbey AK, Yan L.Campbell YL, Kim T, Schilling MW, and Dinh TTN. (2018). Effect of deboning time on the growth of Salmonella, E. coli, aerobic, and lactic acid bacteria during beef sausage processing and storage. Meat Science 139: 49 – 55. DOI: 10.1016/j.meatsci.2018.01.012
Sun, X. B., Huang, J. C., Li, T. T., Ang, Y., Xu, X. L., & Huang, M. (2019). Effects of preslaughter shackling on postmortem glycolysis, meat quality, changes of water distribution, and protein structures of broiler breast meat. Poultry science, 98(9), 4212-4220. DOI: 10.3382/ps/pez175
Tripathi MK and Giri SK. (2014). Probiotic functional foods: Survival of probiotics during processing and storage. Journal of Functional Foods 9(1): 225 – 241. DOI: 10.1016/j.jff.2014.04.030
Umaraw P and Verma A. K. (2017). Comprehensive review on application of edible film on meat and meat products: An eco-friendly approach, Critical Reviews in Food Science and Nutrition, 57:6, 1270-1279, DOI: 10.1080/10408398.2014.986563
Umaraw, P., Munekata, P. E., Verma, A. K., Barba, F. J., Singh, V. P., Kumar, P., & Lorenzo, J. M. (2020). Edible films/coating with tailored properties for active packaging of meat, fish and derived products. Trends in Food Science & Technology, 98, 10-24. DOI: 10.1016/j.tifs.2020.01.032
van Boekel MAJS. (2008). Kinetic Modeling of Reactions In Foods. London: CRC Press.
Verma, A. K., Chatli, M. K., Kumar, D., Kumar, P., & Mehta, N. (2015). Efficacy of Sweet Potato Powder and Added Water as Fat Replacer on the Quality Attributes of Low-fat Pork Patties. Asian-Australasian journal of animal sciences, 28(2), 252–259. DOI:10.5713/ajas.14.0291
Voloski, F. L. S., Tonello, L., Ramires, T., Reta, G. G., Dewes, C., Iglesias, M., & Duval, E. H. (2016). Influence of cutting and deboning operations on the microbiological quality and shelf life of buffalo meat. Meat science, 116, 207-212. DOI:10.1016/j.meatsci.2016.02.020
Wu, H., Ye, L., Lu, X., Xie, S., Yang, Q., Yu, Q. (2018). Lactobacillus acidophilus Alleviated Salmonella-Induced Goblet Cells Loss and Colitis by Notch Pathway. Mol. Nutr. Food Res. DOI:10.1002/mnfr.201800552
Yu, H. H., Song, Y. J., Kim, Y. J., Lee, H. Y., Choi, Y. S., Lee, N. K., & Paik, H. D. (2020). Predictive model of growth kinetics for Staphylococcus aureus in raw beef under various packaging systems. Meat science, 165. DOI:10.1016/j.meatsci.2020.108108