1. Abdel-Aal, E. S. M., Hucl, P., Sosulski, F. W., Graf, R. Gillott, C., Pietrzak, L., 2001. Screening spring wheat for midge resistance in relation to ferulic acid content. J. Agric. Food Chem., 49: 3559–3566.
2. Atak, A., Göksel, Z., Yılmaz, Y.2021. Changes in Major phenolic compounds of seeds, skins, and pulps from various Vitis spp. and the effect of powdery and downy mildew diseases on their levels in grape Leaves. Plants, 10: 2554.
3. Barkai-Golan, R., 2001. Postharvest diseases of fruits and vegetables. Development and control. Elsevier. 6: 418-423.
4. Boutigny, A. L., Richard-Forget, F., Barreau, C., 2008. Natural mechanisms for cereal resistance to the accumulation of Fusarium trichothecenes. Eur. J. Plant Pathol., 121: 411–423.
5. Boutigny, A. L., Barreau, C., Atanasova-Penichon, V., Verdal-Bonnin, M. N., Pinson-Gadais, L., Richard-Forget, F., 2009. Ferulic acid, an efficient inhibitor of type B trichothecene biosynthesis and Tri gene expression in Fusarium liquid cultures. Mycol. Res., 113: 746–753.
6. Brandolini, A., Castoldi, P., Plizzari, L., Hidalgo, A., 2013. Phenolic acids composition, total polyphenols content and antioxidant activity of Triticum monococcum, Triticum turgidum and Triticum aestivum: A two-years evaluation. J. Cereal Sci., 58: 123–131.
7. Carmona, M., Ferrazini, M., Barreto, D. E., 2006. Tan spot of wheat caused by Drechslera tritici-repentis: Detection, transmission, and control in wheat seed. Cereal Res. Commun., 34: 1043–1049.
8. Cowan, M. M., 1999. Plant products as antimicrobial agents. Clin. Microbiol. Rev., 12: 564–582.
9. Dorneles, K. R., Dallagnol, L. J., Pazdiora, P. C., Hoffmann, J. F., Chaves, F. C., Monte, L. G., Rodrigues, F. A, 2018. Wheat leaf resistance to Pyrenophora tritici-repentis induced by silicon activation of phenylpropanoid metabolism. Plant Patho., 67: 1713-1724.
10. Fernandez, M. R., Clarke, J. M., Depauw, R., Irvine, R. B., Knox, R., 1994. Black point and red smudge in irrigated durum wheat in southern Saskatchewan in 1990–1992. Can. J. Plant Pathol., 16: 221–227.
11. Fernadez, M. R., Clarke, J. M., de Pauw, R. M., Lefkovitch, L. P., 1997. Emergence and growth of durum wheat derived from red smudge-infected seed. Crop Sci., 37: 510–514.
12. Fortunato, A. A., Da Silva, W. L., Rodrigues, F. A., 2014. Phenylpropanoid pathway is potentiated by silicon in the roots of banana plants during the infection process of Fusarium oxysporum f. sp cubense. Phytopathol., 104: 597-603.
13. Gani, A., Wani, S. M., Masoodi, F. A., Hameed, G., 2012. Whole-Grain cereal bioactive compounds and their health benefits: A review. Int. J. Food Process. Technol., 3: 1–10.
14. Ghorbi, M., Momeni, H., Rashidi, V., Ahmadzadeh, A. and Yarnia, M. 2021. Resistance of some wheat cultivars to the main race of tan spot disease in Ardabil province. J. Appl. Res. Plant Prot., 11(2): doi 10.22034/ARPP.2021.13624
15. Heim, K. E., Tagliaferro, A. R., Bobilya, D. J., 2002. Flavonoid antioxidants: chemistry, metabolism and structure–activity relationships. J. Nutr. Biochem., 13: 572–584.
16. Kim, K. H., Tsao, R., Yang, R., Cui, S.W., 2006. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem., 95: 466–473.
17. Lamari, L., Bernier, C. C., 1989. Evaluation of wheat lines and cultivars to tan spot [Pyrenophora tritici-repentis] based on lesion type. Can. J. Plant Pathol., 11: 49- 56.
18. Lamari, L., Strelkov, S. E., Yahyaoui, A., Orabi, J., Smith, R. B., 2003. The identification of two new races of Pyrenophora tritici-repentis from the host centre of diversity confirms a one to one relationship in tan spot of wheat. Phytopathol., 93: 391-396.
19. Larez, C. R., Hosford, R. M., Freeman, T. P., 1986. Infection of wheat and oats by Pyrenophora tritici-repentis and initial characterization of resistance. Phytopathol., 76: 931-938.
20. Lattanzio, V., Lattanzio, V. M. T., Cardinali, A., 2006. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochem., 37: 23-67.
21. Li, L., Shewry, R., Ward, J. L., 2008. Phenolic acids in wheat varieties in the Healthgrain diversity screen. J. Agric. Food Chem., 56: 9732–9739.
22. Liu, R. H. 2007. Whole grain phytochemicals and health. J. Cereal Sci., 46: 207–219.
23. Liyana-Pathirana, C., Dexter, J., Shahidi, F. 2006. Antioxidant properties of wheat as affected by pearling. J. Agric. Food Chem., 54: 6177–6184.
24. Martínez, J. A., Valdés, R., Gómez-Bellot, M. J., Bañón, S., 2011. Effects of índole- 3-acetic acid on Botrytis cinerea isolates obtained from potted plants. 63rd Inter. Sym. Crop Prot., (ISCP 2011), Ghent, Belgium.
25. Mattila, P., Pihlava, J. M., Hellstrom, J., 2005. Contents of phenolic acids, alkyl- and alkenylresorcinols, and avenanthramides in commercial grain products. J. Agric. Food Chem., 53: 8290–8295.
26. Mierziak, J., Kostyn, K., Kulma, A., 2014. Flavonoids as important molecules of plant interactions with the environment. Molecules. 19: 16240-16265.
27. Miedes, E., Vanholme, R., Boerjan, W., Molina, A., 2014. The role of the secondary cell way in plant resistance to pathogens. Front. Plant Sci., 5: 1-12.
28. Momeni, H., Aboukhaddour, R., Javan-Nikkhah, M., Razavi, M., Naghavi, M. R., Akhavan, A. and Strelkov, S. E., 2014. Race identification of Pyrenophora tritici-repentis in Iran. J. Plant Pathol., 96: 287-294.
29. Momeni, H., Akhavan, A., Aboukhaddour, R., Javan-Nikkhah, M., Razavi, M., Naghavi, M. R. and Strelkov, S. E., 2019. Simple sequence repeat marker analysis reveals grouping of Pyrenophora tritici-repentis isolates based on geographic origin, Can. J. Plant Pathol., 41: 218-227.
30. Moore, J., Hao, Z., Zhou, K., Luther, M., Costa, J., Yu, L. L., 2005. Carotenoid, tocopherol, phenolic acid, and antioxidant properties of Maryland-grown soft wheat. J. Agric. Food Chem., 53: 6649–6657.
31. Nazari, F., Safaie, N., Soltani, B. M., Shams–Bakhsh, M., Sharifi, M., 2017. Bacillus subtilis affects miRNAs and flavanoids production in Agrobacterium–Tobacco interaction. Plant Physiol. Biochem., 118: 98–106.
32. Pandelova, I, Betts, M. F., Manning, V. A., Wilhelm, L. J., Mockler, T. C., et al., 2009. Analysis of transcriptome changes induced by Ptr ToxA in wheat provides insights into the mechanisms of plant susceptibility. Mol. Plant., 2: 1067–1083.
33. Pandelova, I., Figueroa, M., Wilhelm, L. J., Manning, V. A., Mankaney, A. N., et al., 2012. Host-Selective Toxins of Pyrenophora tritici-repentis induce common responses associated with host susceptibility. PLoS One. 7: e40240.
34. Schilder, A. M. C., Bergstrom, G. C., 1994. Pyrenophora-tritici-repentis as a component of the fungal flora of winter-wheat seed in New-York. Seed Sci. Technol., 22: 285–297.
35. Shalaby, S., Horwitz, B. A., 2014. Plant phenolic compounds and oxidative stress: integrated signals in fungal–plant interactions. Curr. Genet., 61: 347-357.
36. Siranidou, E., Kang, Z., Buchenauer, H. 2002. Studies on symptom development, phenolic compounds and morphological defense responses in wheat cultivars differing in resistance to Fusarium Head Blight. J. Phytopathol., 150: 200-208.
37. Sosulski, F., Krygier, K., Hogge, L., 1982. Free, esterified, and insoluble-bound phenolic acids. Composition of phenolic acids in cereal and potato flours. J. Agric. Food Chem., 30: 337–340.
38. Stuper-Szablewska, K., Perkowski, J., 2017. Phenolic acids in cereal grain: occurrence, biosynthesis, metabolism and role in living organisms, Crit. Rev. Food Sci. Nutr., 59 (4): 664-675.
35. Temple, N. J., 2000. Antioxidants and disease: more questions than answers. Nutr. Res. Rev., 20: 449-459.
39. Vaher, M., Matso, K., Levandi, T., Helmja, K., Kaljurand, M., 2010. Phenolic compounds and the antioxidant activity of the bran, flour and whole grain of different wheat varieties. Procedia Chem., 2: 76–82.
40. Van Hung, P., Maeda, T., Miyatake, K., Morita, N., 2009. Total phenolic compounds and antioxidant capacity of wheat graded flours by polishing method. Int. Food Res., 42: 185–190.
38. Xu, T. F., Zhao, X. C., Jiao, Y. T., Wei, J. Y., Wang, L., Xu, Y., 2014. A pathogenesis related protein, VpPR-10.1, from Vitis pseudoreticulata: An insight of its mode of antifungal activity. PLoS One. 9: 95102.
41. Yang, W., Xu, X., Li, Y., et al., 2016. Rutin-mediated priming of plant resistance to three bacterial pathogens initiating the early SA signal pathway. PloS One. 11: 1-15.
42. Yu, V., Vasanthan, T., Temelli, F., 2001. Analysis of phenolic acids in barley by high-performance liquid chromatography. J. Agric. Food Chem., 49: 4352–4358.
43. Zhang, J., Ding, Y., Dong, H., Hou, H., Zhang, X., 2018. Distribution of phenolic acids and antioxidant activities of different bran fractions from three pigmented wheat varieties. J. Chem., 9 pages. https://doi.org/10.1155/2018/6459243