Salicylic Acid and 24-Epibrassinolide Induced Thermotolerance in Bell Pepper through Enhanced Antioxidant Enzyme System and Heat Shock Proteins

Document Type : Original Research

Authors
1 Department of Botany, Saroop Rani Government College for Women, Amritsar-143001, India.
2 Department of Botany, Punjab Agricultural University, Ludhiana-141004, India.
3 Department of Vegetable Science, Punjab Agricultural University, Ludhiana-141004, India.
4 Department of Biochemistry, Punjab Agricultural University, Ludhiana-141004, India.
Abstract
Elevated temperature negatively affects the production of bell pepper (Capsicum annuum L.) especially under North Indian plains where the temperature is above 40°C during summers. In the present study, the effect of exogenous application of Plant Growth Regulators (PGRs) viz. Salicylic Acid (SA) and 24-Epibrassinolide (EBR) on biochemical parameters and antioxidant system of bell pepper cv. Royal Wonder was evaluated. PGRs were applied exogenously 30, 60 and 90 Days After Transplantation (DAT). All the concentrations of PGRs i.e SA (0.10, 0.20, and 0.50 mM) and EBR (0.05, 0.10, and 0.20 µM) were effective in ameliorating the heat shock-induced effects, which enhanced thermotolerance in terms of increased proline content, soluble proteins, total phenols, total soluble sugars and starch content, improved antioxidant system (CAT, APX, POX, SOD and GR) with reduced lipid peroxidation and cellulase enzyme activity at high temperature, and, ultimately, improving total fruit yield. Application of 0.20 mM SA improved thermotolerance most efficiently at all growth stages, specifically when spray was done at 30 and 60 DAT. It resulted in a significant enhancement in biochemical parameters and antioxidant enzyme system as compared to the untreated control.

Keywords

Subjects


Abdel-Salam, M. M. 2016. Effect of Foliar Application of Salicylic Acid and Micronutrients on the Berries Quality of “Bez El Naka” Local Grape Cultivar. Middle East J. Appl. Sci., 6(1): 178-88.
Ahmad, F., Singh, A. and Kamal, A., 2020. Osmoprotective Role of Sugar in Mitigating Abiotic Stress in Plants. In: Protective Chemical Agents in the Amelioration of Plant Abiotic Stress: Biochemical and Molecular Perspectives, John Wiley and Sons, USA, PP. 53-70.
Ahmadi, M. and Souri, M. K.. 2019. Nutrient Uptake, Proline Content and Antioxidant Enzymes Activity of Pepper (Capsicum annuum L.) under Higher Electrical Conductivity of Nutrient Solution created by Nitrate or Chloride salts of Potassium and Calcium. Acta Sci. Pol. Hortorum Cultus, 18(5): 113-122.
Ahmed, W., Imran, M., Yaseen, M., ul Haq, T., Jamshaid, M. U., Rukh, S, Ikram, R.M., Ali, M., Ali, A., Maqbool, M. and Arif, M. 2020. Role of Salicylic Acid in Regulating Ethylene and Physiological Characteristics for Alleviating Salinity Stress on Germination, Growth and Yield of Sweet Pepper. Peer J., 8: 1-20.
Anonymous, 2015. Package of practices for cultivation of vegetables crops. Punjab Agricultural University, Ludhiana, India.
Arif, Y., Sami, F., Siddiqui, H., Bajguz, A. and Hayat, S. 2020. Salicylic Acid in Relation to Other Phytohormones in Plant: A Study Towards Physiology and Signal Transduction under Challenging Environment. Environ. Exp. Bot., 175: 10404.
Bates, L., S., Waldren, R. P. and Teare, I. D. 1973. Rapid determination of free proline in water stress studies. Plant Soil., 39(1): 205-207.
Chance, B. and Maehly, A. C. 1995. Assay of Catalases and Peroxidases. Method. Enzymol., 2: 764-775.
da Silva Rodrigues, W., Pereira, Y. C., de Souza, A. L. M., Batista, B. L. and da Silva Lobato, A. K. 2020. Alleviation of Oxidative Stress Induced by 24-Epibrassinolide in Soybean Plants Exposed to Different Manganese Supplies: Upregulation of Antioxidant Enzymes and Maintenance of Photosynthetic Pigments. J. Plant Growth Regul., 39(4): 1425-1440.
Das, S. and Bhattacharya, S. S., 2017. Environmental Stress and Stress Biology in Plants. In: Siddiqui, M. W. and Bansal, V., (eds.) Plant Secondary Metabolites, Volume Three: Their Roles in Stress Eco-physiology, Apple Academic Press, Inc., USA, pp 1-38.
Dhindsa, R.S. and Matowe, W. 1981. Drought Tolerance in Two Mosses Correlated with Enzymatic Defense Against Lipid Peroxidation. J. Exp. Bot., 32(1): 79-91.
Dong, Y., Wang, W., Hu, G., Chen, W., Zhuge, Y., Wang, Z. and He, M. R. 2017. Role of Exogenous 24-Epibrassinolide in Enhancing the Salt Tolerance of Wheat Seedlings. J. Soil Sci. Plant Nutr., 17(3): 554-569.
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. T. and Smith, F. 1956. Colorimetric Method for the Determination of Sugars and Related Substances. Anal Chem., 28(3): 350-356.
Erickson, A. N. and Markhart, A. H. 2002. Flower Development Stage and Organ Sensitivity of Bell Pepper (Capsicum annuum L.) to Elevated Temperature. Plant Cell Environ., 25(1): 123-130.
Esterbauer, H. and Grill, D. 1978. Seasonal Variation of Glutathione and Glutathione Reductase in Needles of Picea abies. Plant Physiol., 61(1): 119-121.
Feng, X. H., Zhang, H. X., Ali, M., Gai, W. X., Cheng, G. X., Yu, Q. H., Yang, S. B., Li, X. X. and Gong, Z. H. 2019. A Small Heat Shock Protein CaHsp25. 9 Positively Regulates Heat, Salt, and Drought Stress Tolerance in Pepper (Capsicum annuum L.). Plant Physiol. Biochem., 142: 151-162.
Heath, R. L. and Packer, L. 1968. Photoperoxidation in Isolated Chloroplasts: I. Kinetics and Stoichiometry of Fatty Acid Peroxidation. Arch. Biochem. Biophys., 125: 189-198.
Hussain, M., Khan, T. A., Yusuf, M. and Fariduddin, Q. 2019. Silicon-Mediated Role of 24-Epibrassinolide in Wheat under High-Temperature Stress. Environ. Sci. Pollut. Res., 26(17): 17163-17172.
Ibrahim, A., Abdel-Razzak, H., Wahb-Allah, M., Alenazi, M., Alsadon, A. and Dewir, Y. H. 2019. Improvement in Growth, Yield and Fruit Quality of Three Red Sweet Pepper Cultivars by Foliar Application of Humic and Salicylic Acids. Hort. Technol., 29(2): 170-178.
Iqbal, N., Fatma, M., Khan, N.A. and Umar, S. 2019. Regulatory Role of Proline in Heat Stress Tolerance: Modulation by Salicylic Acid. Plant Signaling Molecules, Woodhead Publishing, PP. 437–448.
Jahan, M. S., Wang, Y., Shu, S., Zhong, M., Chen, Z., Wu, J., Sun, J. and Guo, S. 2019. Exogenous Salicylic Acid Increases the Heat Tolerance in Tomato (Solanum lycopersicum L) by Enhancing Photosynthesis Efficiency and Improving Antioxidant Defense System Through Scavenging of Reactive Oxygen Species. Sci. Hortic., 247: 421-429.
Kaur, H., Kaur, K. and Gill, G. K. 2019. Modulation of Sucrose and Starch Metabolism by Salicylic Acid Induces Thermotolerance in Spring Maize. Rus. J. Plant Physiol. 66(5): 771-777.
Kaur, N. and Pati, P.K. 2019. Harnessing the Potential of Brassinosteroids in Abiotic Stress Tolerance in plants. In Brassinosteroids: Plant Growth and Development, Springer, Singapore, PP. 407-423
Khan, A.R., Hui, C.Z., Ghazanfar, B., Khan, M.A., Ahmad, S.S. and Ahmad, I. 2015. Acetyl Salicylic Acid and 24-epibrassinolide Attenuate Decline in Photosynthesis, Chlorophyll Contents and Membrane Thermo-Stability in Tomato (Lycopersicon esculentum Mill.) under Heat Stress. Pak. J. Bot., 47(1): 63-70.
Khedr, E. 2018. Improving Productivity, Quality and Antioxidant Capacity of Le-Conte Pear Fruits using Foliar Tryptophan, Arginine and Salicylic Applications. Egypt J. Hortic. 45(1): 93-103.
Kim, T. Y., Ku, H. and Lee, S. Y. 2020. Crop Enhancement of Cucumber Plants under Heat Stress by Shungite Carbon. Int. J. Mol. Sci., 21(14): 1-14.
Kousar R., Qureshi R. ,Jalal-ud-din, Munir, M. and Shabbir, G. 2018. Salicylic Acid Mediated Heat Stress Tolerance in Selected Bread Wheat Genotypes of Pakistan. Pak. J. Bot., 50(6): 2141-2146.
Kumari, A. and Hemantaranjan, A. 2019. Mitigating Effects of 24-Epibrassinolide on Heat Stress Damage by Shifting Biochemical and Antioxidant Defense Mechanisms in Wheat (Triticum aestivum L.) at Pre-flowering Stage and Post-flowering Stage. J. Pharmacogn. Phytochem., 8(1): 1157-1161.
Li, Q., Wang, G., Wang, Y., Yang, D., Guan, C. and Ji, J. 2019. Foliar Application of Salicylic Acid Alleviate the Cadmium Toxicity by Modulation the Reactive Oxygen Species in Potato. Ecotoxicol. Environ. Saf., 172: 317-325.
Louis, B. and Roy, P. 2011. Switching Between Heat Shock Proteins and Cold Inducible Proteins under Temperature Fluctuation in Solanum tuberosum L. Cultivars in in vivo Condition. Biotechnol. J. Int., 1(3): 101-112.
Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein Measurement with Folin-Phenol Reagent. J. Biol. Chem., 193(1): 265-275.
Maia, C. F., da Silva, B. R. S. and da Silva Lobato, A. K. 2018. Brassinosteroids Positively Modulate Growth: Physiological, Biochemical and Anatomical Evidence using Two Tomato Genotypes Contrasting to Dwarfism. J. Plant Growth Regul., 37(4): 1099-1112.
Malik, C. P. and Singh, M. B. 1980. Plant Enzymology and Histo Enzymology. Kalyani Publishers, New Delhi, PP. 286.
Marklund, S. and Marklund, G. 1974. Involvement of the Superoxide Anion Radical in the Autoxidation of Pyragallol and a Convenient Assay for Superoide Dismutase. Eur. J. Biochem., 47: 469-474.
Mohammadi, M., Tavakoli, A., Pouryousef, M. and Fard, E.M. 2020. Study the Effect of 24-Epibrassinolide Application on the Cu/Zn-SOD Expression and Tolerance to Drought Stress in Common Bean. Physiol. Mol. Biol. Plant, 26(3): 459-474.
Mostafa, A. A., Al-Askar, A. A., Almaary, K. S., Dawoud, T. M., Sholkamy, E. N. and Bakri, M. M. 2018. Antimicrobial Activity of Some Plant Extracts against Bacterial Strains Causing Food Poisoning Diseases. Saudi J. Biol. Sci., 25: 361–366.
Nakane, Y. and Asado, K. 1987. Purification of Ascorbate Peroxidase from Spinach Chloroplasts: its Activation in Ascorbate-depleted Medium and Reactivation by Monodehydro-Ascorbate Radical. Plant. Cell. Physiol., 28: 131-140.
Ru, L., Jiang, L., Wills, R. B., Golding, J. B., Huo, Y., Yang, H. and Li, Y. 2020. Chitosan Oligosaccharides Induced Chilling Resistance in Cucumber Fruit and Associated Stimulation of Antioxidant and HSP Gene Expression. Sci. Hortic., 264: 1-5.
Ruan, Y., Jin, Y., Yang, Y. J., Li, G. J. and Boyer, J. S. 2010. Sugar Input, Metabolism, and Signaling Mediated by Invertase: Roles in Development, Yield Potential, and Response to Drought and Heat. Mol. Plant, 3: 942–955.
Shevchenko, A., Wilm, M., Vorm, O. and Mann, M. 1996. Mass Spectrometric Sequencing of Proteins from Silver-Stained Polyacrylamide Gels. Anal Chem., 68(5): 850-858.
Sivakumar, R., Chandrasekaran, P., Srividhya, S. and Vijayakumar, M. 2018. Impact of Pink-Pigmented Facultative Methylotroph on Physiological, Growth Analytical Traits and Yield of Tomato (Solanum lycopersicum) under Drought Condition. Int. J. Microbiol. Res., 10(5): 1205-1208.
Soare, R., Dinu, M., Babeanu, C., Popescu, M. and Popescu, A. 2017. Nutritional Value and Antioxidant Activities in Fruit of Some Cultivars of Pepper (Capsicum annuum L.). J. Agroalimentary Process Technol., 23(4): 217-222.
Souri, M.K. and Tohidloo, G., 2019. Effectiveness of Different Methods of Salicylic Acid Application on Growth Characteristics of Tomato Seedlings under Salinity. Chem. Biol. Tech. Agri., 6(1): 1-7.
Soylemez, S., Kaya, C. and Dikilitas, S.K. 2017. Promotive Effects of Epibrassinolide on Plant Growth, Fruit Yield, Antioxidant, and Mineral Nutrition of Saline Stressed Tomato Plants. Pak. J. Bot., 49(5): 1655–1661.
Sri, N. D., Mohan, M. M., Mahesh, K., Raghu, K. and Rao, S. S. R. 2016. Amelioration of Aluminum Toxicity in Pigeon Pea [Cajanus cajan (l.) millsp.] Plant by 24-Epibrassinolide. Amer. J. Plant Sci., 7(12): 1618-1628.
Swain, T. and Hills, W. E. 1959. The Phenolic Constituents of Prunus domestica-The Qualitative Analysis of Phenolic Constituents. J. Sci. Food Agric., 10: 63-68.
Vidya, S. M., Kumar, H. V., Bhatt, R. M., Laxman, R.H. and Ravishankar, K.V. 2018. Transcriptional Profiling and Genes Involved in Acquired Thermotolerance in Banana: a Non-Model Crop. Sci. Rep., 8(1): 1-10.
Wu, X., Yao, X., Chen, J., Zhu, Z., Zhang, H. and Zha, D. 2014. Brassinosteroids Protect Photosynthesis and Antioxidant System of Eggplant Seedlings from High-Temperature Stress. Acta Physiol. Plant, 36(2): 251-261.
Xue, Y., Peng, R., Xiong, A., Li, X., Zha, D. and Yao, Q. 2010. Over-Expression of Heat Shock Protein Gene hsp26 in Arabidopsis thaliana Enhances Heat Tolerance. Biol. Plant, 54(1): 105-111.
Yang, R., Yu, G., Li, H., Li, X. and Mu, C. 2020. Overexpression of Small Heat Shock Protein Limhsp16.45 in Arabidopsis Enhances Tolerance to Abiotic Stresses. Rus. J. Plant Physiol., 67(2): 231-241.
Yin, Y., Qin, K., Song, X., Zhang, Q., Zhou, Y., Xia, X. and Yu, J. 2018. BZR1 Transcription Factor Regulates Heat Stress Tolerance through FERONIA Receptor-like Kinase-Mediated Reactive Oxygen Species Signaling in Tomato. Plant Cell Physiol., 59(11): 2239-2254.