Identification of miRNAs and Their Target Genes in Taraxacum spp

Document Type : Original Research

Authors
1 Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, P.O. Box: 31587–11167, Karaj, Islamic Republic of Iran.
2 Agricultural Biotechnology Research Institute of Iran - Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), P. O. Box: 85135-487, Isfahan, Islamic Republic of Iran.
Abstract
MicroRNAs are endogenous noncoding RNA that play vital roles in all plant cellular metabolic processes by mediating target gene expression. To date, miRNAs in Taraxacum spp., which is an important industrial plant, have remained largely unknown. In the present study, 970 miRNAs from 399 families were identified in Taraxacum spp by conducting computational approaches. The most frequent miRNAs in Taraxacum spp was miR5021. According to the KEGG results, miR5021, miR838, and miR1533 are related to the terpene biosynthesis pathway, while miR5015b, and miR1436 are involved in the starch and sucrose biosynthesis pathways. Quantitative real-time PCR assay was performed to validate the expression levels of five predicted miRNAs and 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase (HMGCR) and invertase as the target genes. Results indicated that the highest relative expression of miR1533 and miR1436 occurred in the flower, while the highest transcripts levels of miR5015b were observed in the stem. In addition, the higher relative expression level of the miR5021 and miR838 was consistent with the lower expression level of the HMGCR gene in all tissue, suggesting that miR5021 and miR838 are involved in regulating HMGCR gene expression. Since mevalonate pathway is the main source of isopentenyl pyrophosphate, which is used in the synthesis of rubber, miR5021 and miR838 play an important role in the production of rubber by regulating the expression of HMGCR enzyme. These findings will accelerate future perspective studies on the regulatory mechanisms of miRNAs in Taraxacum kok-saghyz.

Keywords

Subjects


Baldrich, P., Beric, A. and Meyers, B.C., 2018. Despacito: the slow evolutionary changes in plant microRNAs. Current opinion in plant biology 42, 16-22.
Bolger, A.M., Lohse, M. and Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120.
Chen, C., Ridzon, D.A., Broomer, A.J., Zhou, Z., Lee, D.H., Nguyen, J.T., Barbisin, M., Xu, N.L., Mahuvakar, V.R. and Andersen, M.R., 2005. Real-time quantification of microRNAs by stem–loop RT–PCR. Nucleic acids research 33, e179-e179.
Conesa, A., Götz, S., García-Gómez, J.M., Terol, J., Talón, M. and Robles, M., 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674-3676.
Dai, X. and Zhao, P.X., 2011. psRNATarget: a plant small RNA target analysis server. Nucleic acids research 39, W155-W159.
Duan, J., Xia, C., Zhao, G., Jia, J. and Kong, X., 2012. Optimizing de novo common wheat transcriptome assembly using short-read RNA-seq data. BMC genomics 13, 392.
Fan, R., Li, Y., Li, C. and Zhang, Y., 2015. Differential microRNA analysis of glandular trichomes and young leaves in Xanthium strumarium L. reveals their putative roles in regulating terpenoid biosynthesis. PLoS One 10, e0139002.
Frazier, T.P., Xie, F., Freistaedter, A., Burklew, C.E. and Zhang, B., 2010. Identification and characterization of microRNAs and their target genes in tobacco (Nicotiana tabacum). Planta 232, 1289-1308.
Haas, B.J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P.D., Bowden, J., Couger, M.B., Eccles, D., Li, B. and Lieber, M., 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature protocols 8, 1494-1512.
Hammond, S.M., 2015. An overview of microRNAs. Advanced drug delivery reviews 87, 3-14. Hayashi, Y., 2009. Production of natural rubber from Para rubber tree. Plant Biotechnology 26,
67-70.
Huang, X. and Madan, A., 1999. CAP3: A DNA sequence assembly program. Genome research 9, 868-877.
Huber, M., Triebwasser-Freese, D., Reichelt, M., Heiling, S., Paetz, C., Chandran, J.N., Bartram, S., Schneider, B., Gershenzon, J. and Erb, M., 2015. Identification, quantification, spatiotemporal distribution and genetic variation of major latex secondary metabolites in the common dandelion (Taraxacum officinale agg.). Phytochemistry 115, 89-98.
Jung, H.J., Park, S.J. and Kang, H., 2013. Regulation of RNA metabolism in plant development and stress responses. Journal of Plant Biology 56, 123-129.
Kanehisa, M. and Goto, S., 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research 28, 27-30.
Karimi, A. A., Naghavi, M. R., Peyghambari, S. A., & Rasoulnia, A. (2021). Inulin content and expression of related genes in different tissues and cell suspension culture of Taraxacum kok-saghyz. In Vitro Cellular & Developmental Biology-Plant, 1-9.
Li, L., Xu, J., Yang, D., Tan, X. and Wang, H., 2010. Computational approaches for microRNA studies: a review. Mammalian Genome 21, 1-12.
Luo, Z., Iaffaldano, B.J., Zhuang, X., Fresnedo-Ramírez, J. and Cornish, K., 2017. Analysis of the first Taraxacum kok-saghyz transcriptome reveals potential rubber yield related SNPs. Scientific reports 7, 1-13.
Mandhan, V., Kaur, J. and Singh, K., 2012. smRNAome profiling to identify conserved and novel microRNAs in Stevia rebaudiana Bertoni. BMC plant biology 12, 197.
Mathiyalagan, R., Subramaniyam, S., Natarajan, S., Kim, Y.J., Sun, M.S., Kim, S.Y., Kim, Y.-J. and Yang, D.C., 2013. Insilico profiling of microRNAs in Korean ginseng (Panax ginseng Meyer). Journal of Ginseng Research 37, 227.
Mehta, A., Gupta, H., Rawal, R., Mankad, A., Tiwari, T., Patel, M. and Ghosh, A., 2016. In silico microRNA identification from Stevia rebaudiana transcriptome assembly. European Journal of Medicinal Plants, 1-14.
Mooibroek, H. and Cornish, K., 2000. Alternative sources of natural rubber. Applied microbiology and biotechnology 53, 355-365.
Najafabadi, A.S. and Naghavi, M.R., 2018. Mining Ferula gummosa transcriptome to identify miRNAs involved in the regulation and biosynthesis of terpenes. Gene 645, 41-47.
Nowicki, M., Zhao, Y., Boggess, S.L., Fluess, H., Payá-Milans, M., Staton, M.E., Houston, L.C., Hadziabdic, D. and Trigiano, R.N., 2019. Taraxacum kok-saghyz (rubber dandelion) genomic microsatellite loci reveal modest genetic diversity and cross-amplify broadly to related species. Scientific reports 9, 1-17.
Numnark, S., Mhuantong, W., Ingsriswang, S. and Wichadakul, D., 2012. C-mii: a tool for plant miRNA and target identification, BMC genomics. Springer, pp. S16.
Panara, F., Lopez, L., Daddiego, L., Fantini, E., Facella, P. and Perrotta, G., 2018. Comparative transcriptomics between high and low rubber producing Taraxacum kok-saghyz R. plants. BMC genomics 19, 1-14.
Pani, A. and Mahapatra, R.K., 2013. Computational identification of microRNAs and their targets in Catharanthus roseus expressed sequence tags. Genomics data 1, 2-6.
Patel, S. and Goyal, A., 2012. The current trends and future perspectives of prebiotics research: a review. 3 Biotech 2, 115-125.
Pfaffl, M.W., Horgan, G.W. and Dempfle, L., 2002. Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real- time PCR. Nucleic acids research 30, e36-e36.
Ramirez-Cadavid, D.A., Cornish, K. and Michel Jr, F.C., 2017. Taraxacum kok-saghyz (TK): compositional analysis of a feedstock for natural rubber and other bioproducts. Industrial Crops and Products 107, 624-640.
Sabzehzari, M. and Naghavi, M., 2019. Phyto-miRNA: a molecule with beneficial abilities for plant biotechnology. Gene 683, 28-34.
Salehi, M., Bahmankar, M., Naghavi, M., Cornish, K., 2022. Rubber and latex extraction processes for Taraxacum kok-saghyz, Industrial Crops and Products 178.Samad, A.F., Sajad, M., Nazaruddin, N., Fauzi, I.A., Murad, A., Zainal, Z. and Ismail, I., 2017. MicroRNA and transcription factor: key players in plant regulatory network. Frontiers in plant science 8, 565.
Singh, N. and Sharma, A., 2014. In-silico identification of miRNAs and their regulating target functions in Ocimum basilicum. Gene 552, 277-282.
Singh, N., Srivastava, S., Shasany, A.K. and Sharma, A., 2016. Identification of miRNAs and their targets involved in the secondary metabolic pathways of Mentha spp. Computational biology and chemistry 64, 154-162.
Singh, V.K., Singh, A.K., Singh, S. and Singh, B.D., 2015. Next-generation sequencing (NGS) tools and impact in plant breeding, Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools. Springer, pp. 563-612.
Smith-Unna, R., Boursnell, C., Patro, R., Hibberd, J.M. and Kelly, S., 2016. TransRate: reference-free quality assessment of de novo transcriptome assemblies. Genome research 26, 1134-1144.
Srivastava, S., Singh, N., Srivastava, G. and Sharma, A., 2017. MiRNA mediated gene regulatory network analysis of Cichorium intybus (chicory). Agri Gene 3, 37-45.
Su, G., Morris, J.H., Demchak, B. and Bader, G.D., 2014. Biological network exploration with Cytoscape 3. Current protocols in bioinformatics 47, 8.13. 1-8.13. 24.
Tauzin, A.S. and Giardina, T., 2014. Sucrose and invertases, a part of the plant defense response to the biotic stresses. Frontiers in plant science 5, 293.
Tian, T., Wang, J. and Zhou, X., 2015. A review: microRNA detection methods. Organic & biomolecular chemistry 13, 2226-2238.
Van Beilen, J.B. and Poirier, Y., 2007. Establishment of new crops for the production of natural rubber. TRENDS in Biotechnology 25, 522-529.

Varkonyi-Gasic, E., Wu, R., Wood, M., Walton, E.F. and Hellens, R.P., 2007. Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant methods 3, 1-12.
Wang, L., Zheng, Y., Ding, S., Zhang, Q., Chen, Y. and Zhang, J., 2017. Molecular cloning, structure, phylogeny and expression analysis of the invertase gene family in sugarcane. BMC plant biology 17, 1-20.
Wang, M., Wang, Q. and Wang, B., 2012. Identification and characterization of microRNAs in Asiatic cotton (Gossypium arboreum L.). PLoS One 7, e33696.
Warde-Farley, D., Donaldson, S.L., Comes, O., Zuberi, K., Badrawi, R., Chao, P., Franz, M., Grouios, C., Kazi, F. and Lopes, C.T., 2010. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic acids research 38, W214-W220.
Xie, F., Frazier, T.P. and Zhang, B., 2010. Identification and characterization of microRNAs and their targets in the bioenergy plant switchgrass (Panicum virgatum). Planta 232, 417-434.
Ye, J., Fang, L., Zheng, H., Zhang, Y., Chen, J., Zhang, Z., Wang, J., Li, S., Li, R. and Bolund, L., 2006. WEGO: a web tool for plotting GO annotations. Nucleic acids research 34, W293-W297.
Zhang, B., Pan, X., Cannon, C.H., Cobb, G.P. and Anderson, T.A., 2006a. Conservation and divergence of plant microRNA genes. The Plant Journal 46, 243-259.
Zhang, B., Pan, X., Cox, S., Cobb, G. and Anderson, T., 2006b. Evidence that miRNAs are different from other RNAs. Cellular and Molecular Life Sciences CMLS 63, 246-254.