Expression of CMe-ACS1 and Ethylene Receptor Genes in Melon F1 Progenies under Cold Storage Condition

Document Type : Original Research

Authors
Department of Horticultural Sciences, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Islamic Republic of Iran.
Abstract
Introducing new melon types able to endure cold storage and cold transportation is among the major goals of breeders. Therefore, providing a better understanding of the fruit physiological traits and postharvest associated genes expression can help to select the superior type for cold storage condition. This experiment was carried out to investigate the postharvest behavior of various melon lines and their F1 breeds based on fruit characteristics and their relation to the expression of CMe-ACS1, CM-ETR1 and CM-ETR2 genes during cold storage. For this purpose, six melon inbred lines were cross-pollinated to form a full diallel F1 population. Thus, the studied population constituted 6 parental lines, 15 direct hybrids, and 15 reciprocal F1 hybrids. After fruits harvest and during one month of storage, fruits firmness loss, color changes, and weight loss were evaluated. A significant positive correlation coefficient was found between CMe-ACS1 gene expression and ACC content with two distinct clusters based on this relation. Gene expression profiles referred to the presence of gradual and continuous senescence behaviors in the studied types, which was reflected in their physiological postharvest performance. G1 cluster types expressed the studied receptor genes at lower rates compared to the other groups. The G1 corresponded with P3 and P4 groups that were characterized by low physiological changes and thus better postharvest performance during cold storage. This result highlights the importance of Persian inodorus melons, generally, and the line ‘Khatouni’, specifically, in melon breeding programs for postharvest purposes.

Keywords

Subjects


REFERENCES
Alabboud, M., Kalantari, S., & Soltani, F. (2020). Analysis of general and specific combining ability of postharvest attributes in melon. Journal of Agricultural Science and Technology, 22(6), 1523-1535.
Ayub, Ricardo, Monique Guis, Mohamed Ben Amor, Laurent Gillot, Jean-Paul Roustan, Alain Latché, Mondher Bouzayen, and Jean-Claude Pech (1996) Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits. Nat. Biotechnol. 14: 862. DOI: 10.1038/nbt0796-862.
Babicki, Sasha, David Arndt, Ana Marcu, Yongjie Liang, Jason R. Grant, Adam Maciejewski, and David S. Wishart. (2016). Heatmapper: web-enabled heat mapping for all. Nucleic acids research, 44(W1), W147-W153. doi:10.1093/nar/gkw419
Birnbaum, K., Shasha, D. E., Wang, J. Y., Jung, J. W., Lambert, G. M., Galbraith, D. W., & Benfey, P. N. (2003) A gene expression map of the Arabidopsis root. Science. 302: 1956-1960. DOI: 10.1126/science.1090022.
Bulens, I., Van de Poel, B., Hertog, M. L., De Proft, M. P., Geeraerd, A. H., & Nicolaï, B. M. (2011) Protocol: an updated integrated methodology for analysis of metabolites and enzyme activities of ethylene biosynthesis. Plant Methods. 7: 17. DOI: 10.1186/1746-4811-7-17.
de Sousa Abreu, R., Penalva, L. O., Marcotte, E. M., & Vogel, C. (2009) Global signatures of protein and mRNA expression levels. Mol Biosyst. 5: 1512-1526. DOI: 10.1039/B908315D.
Ezura, H., & Owino, W. O. (2008) Melon, an alternative model plant for elucidating fruit ripening. Plant Sci. J. 175: 121-129. doi:10.1016/j.plantsci.2008.02.004.
Hatami, M., Kalantari, S., & Soltani, F. (2016) Different ripening indices and quality attributes of different groups of Cucumis melo. Int J Hortic Sci Technol. 3: 69-76. doi: 10.22059/IJHST.2016.58163.
Hatami, M., Kalantari, S., Soltani, F., & Beaulieu, J. C. (2019) Storability, Quality Changes, and General Postharvest Behavior of Dudaim Melon Harvested at Two Maturity Stages. Horttechnology. 29: 241-250. doi: 10.21273/HORTTECH04057-18.
Kong, Q., Gao, L., Cao, L., Liu, Y., Saba, H., Huang, Y., & Bie, Z. (2016) Assessment of Suitable Reference Genes for Quantitative Gene Expression Studies in Melon Fruits. Front Plant Sci. 7: 1178. doi:10.3389/fpls.2016.01178.
Lee, J. M. (2003) Genomic Gene Clustering Analysis of Pathways in Eukaryotes. Genome Res. 13:875-882. doi:10.1101/gr.737703.
Liu, Q., Xu, C., & Wen, C. K. (2010) Genetic and transformation studies reveal negative regulation of ERS1 ethylene receptor signaling in Arabidopsis. BMC Plant Biol. 10: 60. DOI: 10.1186/1471-2229-10-60.
Michalak, P. (2008) Coexpression, coregulation, and cofunctionality of neighboring genes in eukaryotic genomes. Genomics. 91: 243-248. doi:10.1016/j.ygeno.2007.11.002.
Mohi-Alden, K., Alabboud, M., Soltani, F., kalantari, S. (2021). Developing a postharvest color changes identification system of melon rind using image processing. DYSONA - Applied Science. 13-20. doi: 10.30493/das.2021.263257
Obando, J., Miranda, C., Jowkar, M. M., Moreno, E., Sour, M. K., Martínez, J. A., . . . Fernández-Trujillo, J. P. (2007) Creating climacteric melon fruit from nonclimacteric parentals: Postharvest quality implications. Advances in Plant Ethylene Research. 197-205. doi:10.1007/978-1-4020-6014-4_42.
Obando-Ulloa, J. M., Jowkar, M., Moreno, E., Souri, M. K., Martínez, J. A., Bueso, M. C., . . . Fernández-Trujillo, J. P. (2009) Discrimination of climacteric and non-climacteric melon fruit at harvest or at the senescence stage by quality traits. J. Sci. Food Agric. 89: 1743-1753. doi:10.1002/jsfa.3651.
Owino, W. O., Ma, B., Sun, H. J., Shoji, T., & Ezura, H. (2007) Characteristics of an ethylene inducible ethylene receptor Cm-ETR2 in melon fruit. Advances in Plant Ethylene Research. 39-40. doi:10.1007/978-1-4020-6014-4_9.
Paul, V., Pandey, R., & Srivastava, G. C. (2011) The fading distinctions between classical patterns of ripening in climacteric and non-climacteric fruit and the ubiquity of ethylene—An overview. J Food Sci Technol. 49: 1-21. doi:10.1007/s13197-011-0293-4.
Pech, J., Bouzayen, M., & Latché, A. (2008) Climacteric fruit ripening: Ethylene-dependent and independent regulation of ripening pathways in melon fruit. Plant Sci. J. 175: 114-120. doi:10.1016/j.plantsci.2008.01.003.
Pfaffl, M. W. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29: e45-e45. doi:10.1093/nar/29.9.e45.
Saladié, Montserrat, Joaquin Cañizares, Michael A. Phillips, Manuel Rodriguez-Concepcion, Christian Larrigaudière, Yves Gibon, Mark Stitt, John Edward Lunn, and Jordi Garcia-Mas. (2015) Comparative transcriptional profiling analysis of developing melon (Cucumis melo L.) fruit from climacteric and non-climacteric varieties. BMC Genomics. 16:440 doi:10.1186/s12864-015-1649-3.
Vogel, C., & Marcotte, E. M. (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 13: 227-232. doi:10.1038/nrg3185.
Yamamoto M, Miki T, Ishiki Y, Fujinami K, Yanagisawa Y, Nakagawa H, Ogura N, Hirabayashi T, Sato T. (1995) The Synthesis of Ethylene in Melon Fruit during the Early Stage of Ripening. Plant Cell Physiol. 36: 591-596. doi:10.1093/oxfordjournals.pcp.a078798.
Yano R, Ezura H. (2016) Fruit ripening in melon. In: Grumet R., Katzir N., Garcia-Mas J, editors. Genetics and Genomics of Cucurbitaceae. Springer, Cham: pp. 345-375.