Establishment of Callus Induction, Cell Suspension Culture, and Agrobacterium-mediated Transformation system for Iranian Rice Cultivars

Document Type : Original Research

Authors
1 Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Islamic Republic of Iran.
2 Department of Agricultural Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Islamic Republic of Iran.
3 Rice Research Institutes of Iran, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Islamic Republic of Iran.
Abstract
Up to now, a large number of optimized plant systems have been established for various purposes in Japonica and Indica rice. Based on genetic diversity in rice cultivars, this study established highly efficient protocols for in vitro callus induction, cell suspension cultures, and genetic transformation for some Iranian rice cultivars using mature embryos. In this study, the effect of different concentrations of 2,4-D (0.0, 1.0, 1.5, and of 2.0 mg L-1) on callus induction were investigated in 10 cultivars. Regarding higher callus induction frequency and mean weight of fresh calli, Hashemi, Binam, and Kazemi cultivars were selected for the experiments. The effects of kinetin (0.0, 1.0, and 2.0 mg L-1) and sucrose (30.0 and 60.0 g L-1) concentrations were tested to improve the biomass yield of a cell suspension culture. The MS medium supplemented with 0.5 mg L-1 2,4-D, 2.0 mg L-1 kinetin, and 60.0 g L-1 sucrose exhibited the maximum cell growth in the selected cultivars. The transformation efficiency for different bacterial strains (EHA105, LBA4404, and AGL-1), OD600 (0.1, 0.3, 0.6), the concentration of acetosyringone (50, 100, 200 μM), and co-cultivation period (1, 2, 3 days) were evaluated. The presence and expression of gusA gene in transgenic cultivars were determined by GUS histochemical assay, PCR, and RT-PCR analysis. The result showed that Hashemi cultivar had the highest cell biomass and efficiency of genetic transformation (58%) with EHA105 at bacterial OD600= 0.3, in 100 (μM) acetosyringone and two days of co-culture time. The findings offer insights for genetic transformation studies in Iranian rice cultivars.

Keywords

Subjects


Afolabi A.S, Oyebanji O., Odusanya O., Abo M.E., Misra M., Ogbadu G.H. (2008): Regeneration of plants from rice caryopsisderived callus culture of Nigerian local Cv . Suakoko 8 and a NERICA Cv . FARO 55. Afr. J. Plant Sci 2: 109-12.
Aviezer, D., Brill-Almon, E., Shaaltiel, Y., Hashmueli, S., Bartfeld, D., Mizrachi, S., Liberman, Y., Freeman, A., Zimran, A. and Galun, E. 2009. A plant-derived recombinant human glucocerebrosidase enzyme a preclinical and phase I investigation. PLoS One, 4 (3): e4792.
Binte Mostafiz, S., & Wagiran, A. (2018). Efficient callus induction and regeneration in selected Indica rice. Agronomy, 8(5), 77.
Bushra S., Anwar F., Ashraf M. (2009): Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts, Molecules 14, 2167-2180.
Chen M.H., Liu L.F., Chen Y.R., Wu H.K., Yu S.M. (1994): Expression of alpha-amylases, carbohydrate metabolism, and autophagy in cultured rice cells is coordinately regulated by sugar nutrient, Plant J 6, 625-36.
Chen T.L., Lin Y.L., Lee Y.L., Yang N.S., Chan M.T. (2004). Expression of bioactive human interferon-gamma in transgenic rice cell suspension cultures, Transgenic Res 13, 499-510.
Ding L., Ning T., Moxuan L., Chunxiu S., Yuanyi H., Yumei X., Mengliang C. (2016): Using hygromycin phosphotransferase and enhanced green fluorescent protein genes for tracking plastid transformation in rice (Oryza sativa L.) via gold particle bombardment, Nanosci. Nanotechnol. Lett 8, 409-417.
Goff S.A, Ricke D., Lan T.H., Presting G., Wang R., Dunn M., Glazebrook J., Sessions A., Oeller P., Varma H. et al. (2002): A draft sequence of the rice genome (Oryza sativa L. ssp japonica), Sci 296, 92-100.
Hiei Y., Komari T., Kubo T. (1997): Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol. Biol 35: 205-218.
Indurker S., Misra, H.S., Eapen S. (2010): Agrobacterium-mediated transformation in chickpea (Cicer arietinum L.) with an insecticidal protein gene: optimization of different factors. PMBP 16, 273-284.
Jefferson R.A. (1987): Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol 5, 387-405.
Jonoubi P., Mousavi A., Majd A., Salmanian A.H., Jalali J.M. (2005): Efficient regeneration of Brassica napus L. hypocotyls and genetic transformation by Agrobacterium tumefaciens, Biol. Plantarum 49, 175-180.
Khush G.S. (1997): Origin, dispersal, cultivation and variation of rice, Plant Mol. Biol 35, 25-34.
Kim N.S., Kim T.G., Jang Y.S., Shin Y.J., Kwon T.H., Yang M.S. (2008): Amylase gene silencing by RNA interference improves recombinant hGM-CSF production in rice suspension culture. Plant Mol. Biol 68, 369-377.
Koetle M.J., Baskaran P., Finnie J.F., Soos V., Balazs E., Van., Staden J. (2017): Optimization of transient GUS expression of Agrobacterium-mediated transformation in Dierama erectum Hilliard using sonication and Agrobacterium. S. Afr. J. Bot 111, 307-312.
Lee K., Jeon H., Kim M. (2002): Optimization of mature embryo-based in vitro culture system for high-frequency somatic embryogenic callus induction and plant regeneration from japonica rice cultivars. Plant Cell Tissue Organ Cult 71, 237-244.
Lee W.L, Chan L.K. (2004): Establishment of Orthosiphon stamineus cell suspension for cell growth, Plant Cell Tissue Organ Cult, 78, 101-106.
Lima E.C., Paiva R., Nogueira R.C., Soares F.P., Emrich E.B., Silva AAN. (2008): Callus induction in leaf segments of Croton urucurana Baill, Cienc. Agrotec 32, 17-22.
Liu Y.K., Li Y.T., Lu C.F., Huang L.F. (2015). Enhancement of recombinant human serum albumin in transgenic rice cell culture system by cultivation strategy, New Biotechnol 32, 328-334.
Maleki S.S, Mohammadi K., Ji K.S. (2018): Study on factors influencing transformation efficiency in Pinus massoniana using Agrobacterium tumefaciens. Plant Cell, Tissue and Organ Culture; https://doi.org/10.1007/s11240-018-1388-7.
Nam H.J, Kwon J.Y., Choi H.Y., Kang S.H., Jung H.S. (2017): Production and Purification of Recombinant Glucocerebrosidase in Transgenic Rice Cell Suspension Cultures. Appl Biochem Biotechnol 181, 1401-1415.
Nyaboga E.N., Njiru J.M., Tripathi L. (2015): Factors influencing somatic embryogenesis, regeneration, and Agrobacterium-mediated transformation of cassava (Manihot esculenta Crantz) cultivar TME14. Frontiers in Plant Science; doi: 10.3389/fpls. 2015.00411.
Osman N.I., Sidik N.J., Awal A. (2016): Effects of variations in culture media and hormonal treatments upon callus induction potential in endosperm explant of Barringtonia racemosa L., Asian Pac. J. Trop. Biomed 6, 143-147.
Ozawa K. (2009): Establishment of a high-efficiency Agrobacterium-mediated transformation system of rice (Oryza sativa L.). Plant Sci 176, 522-527.
Pizzocaro F., Torreggiani D., Gilardi G. (1993): Inhibition of apple polyphenoloxidase (ppo) by ascorbic acid, citric acid, and sodium chloride, J. Food Process. Pres 17, 21-30.
Raina, S.K. (1989): Tissue Culture in Rice Improvement: Status and Potential. Adv. Agron 42, 339-398.
Sambrook J., Russell D.W. (2006): Molecular cloning: A laboratory manual, New York, Cold Spring Harbor Laboratory Press.
Sathish, S., Venkatesh, R., Safia, N., & Sathishkumar, R. (2018). Studies on growth dynamics of embryogenic cell suspension cultures of commercially important Indica rice cultivars ASD16 and Pusa basmati. 3 Biotech, 8(4), 194.
Schmale K., Rademacher T., Fischer R., Hellwig S. (2006): Towards industrial usefulness cryo-cell-banking of transgenic BY-2 cell cultures, J. Biotechnol, 124, 302-311.
Slamet-Loedin I.H., Chadha-Mohanty P., Torrizo L. (2014) Agrobacterium-Mediated Transformation: Rice Transformation. In: Henry R., Furtado A. (eds) Cereal Genomics. Methods in Molecular Biology (Methods and Protocols), vol 1099. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-715-0_21
Susanto, F. A., Wijayanti, P., Fauzia, A. N., Komalasari, R. D., Nuringtyas, T. R., & Purwestri, Y. A. (2020). Establishment of a plant tissue culture system and genetic transformation for agronomic improvement of Indonesian black rice (Oryza sativa L.). Plant Cell, Tissue and Organ Culture (PCTOC), 1-13.
Tariq M, Ali G, Hadi F, Ahmad S, Ali N, Ali-Shah A. (2008). Callus induction and in vitro plant regeneration of rice (Oryza sativa L.) under various conditions, Pak. J. Biol. Sci 11, 255-259.
Terada R., Asao H., Iida S. (2004): A large-scale Agrobacterium-mediated transformation procedure with a strong positive-negative selection for gene targeting in rice (Oryza sativa L.), Plant Cell Rep 22, 653-659.
Tiwari S.K., Tiwari K.P., Siril E.A. (2002): An improved micropropagation protocol for teak, Plant Cell Tiss Organ Cult 71: 1-6.
Trexler M.M, McDonald K.A., Jackman A.P. (2005): A cyclical semicontinuous process for the production of human α1-antitrypsin using metabolically induced plant cell suspension cultures, Biotechnol. Prog 21, 321-328.
Vancanneyt G., Schmidt R., O’Connor-Sanchez A., Willmitzer L., Rocha-Sosa M. (1990): Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Molecular Gene and Genetics 220, 245-250.
Wang S., Cao S., Wang Y., Jiang B., Wang L., Sun F., Ji R. (2016): Fate and metabolism of the brominated flame retardant tetra bromo bisphenol A (TBBPA) in rice cell suspension culture, Environ Pollut 214, 299-306.
Wang, X., Fang, G., Li, Y., Ding, M., Gong, H., & Li, Y. (2013). Differential antioxidant responses to cold stress in cell suspension cultures of two subspecies of rice. Plant Cell, Tissue and Organ Culture (PCTOC), 113(2), 353-361.
Wu H.Y., Liu K.H., Wang Y.C., Wu J.F., Chiu W.L., Chen C.Y., Wu S.H., Sheen J., Lai E.M. (2014): AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings. Plant Methods 10: 19.
Zagorskaya, A. A., & Deineko, E. V. (2017). Suspension-cultured plant cells as a platform for obtaining recombinant proteins. Russian Journal of Plant Physiology, 64(6), 795-807.
Zhao W., Zheng S., Ling H.Q. (2011): An efficient regeneration system and Agrobacterium-mediated transformation of Chinese upland rice cultivar Handao297. Plant Cell Tiss Organ Cult 106, 475-483.