Canonical Correlations between Nanomecanical Properties and Some Agronomic Traits in Sugar Beet

Document Type : Original Research

Authors
1 Department of Nanobiotechnology, Tehran University, Islamic Republic of Iran.
2 Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Shahid Fahmideh BLVD, Karaj, Islamic Republic of Iran.
3 Plant Gene Bank, Seed and Plant Improvement Institute (SPII), Agricultural Research, Education and Extension Organization (AREEO), Shahid Fahmideh BLVD, Karaj, Karaj, Islamic Republic of Iran.
Abstract
The purpose of this research was to study the relationships between surface nanomechanical properties and agronomic traits in different sugar beet varieties (Beta vulgaris spp.). Agronomic traits were related to the indicators of seed germination stage and resistance to rhizomania; and in correspondence, a group of nanomechanical traits of inner testa of seeds were examined using an atomic force microscope. The results of parametric and non-parametric correlation analysis between agronomic and nanomechanical traits showed that the single bud wet weight had a significant negative and positive relationship with, respectively, lower surface friction and adhesion of the inner testa. Similarly, thousand shell weight had a negative correlation with upper surface elasticity, and also seed vigor had a positive correlation with upper surface friction. Spearman's rho correlation coefficient showed that resistance to rhizomania also had a significant positive correlation with the upper surface adhesion of the inner testa. Three canonical variables between the two groups of physiological and nanomechanical traits were significant (r1= 0.972 and DF= 66; r2= 0.924 and DF= 50; r3= 0.839 and DF= 36). These traits have a kind of cause-and-effect relationship and, therefore, have the potential to be used for breeding programs and plant systematic studies.

Keywords

Subjects


Alazemi, A.A., Ghosh, A., Sadeghi, F., Stacke, L.E. 2016. Experimental investigation of the correlation between adhesion and friction forces. Tribology Letters 62, 30. https://doi.org/10.1007/s11249-016-0679-6.
Bazrgar, A.B., Soltani, A., Koocheki, A., Zeinali, E., Ghaemi, A. 2011. Environmental emissions profile of different sugar beet cropping systems in East of Iran. African Journal of Agricultural Research 6(29). DOI: 10.5897/AJAR11.1337
Bekis, D. 2020. Review on correlation of plant physiology and breeding for crop improvement strategies. International Journal of Research Studies in Agricultural Sciences (IJRSAS), Volume 6, Issue 3, PP 1-7 ISSN No. (Online) 2454–6224 DOI: 10.20431/2454-6224.0603001).
Benítez, J.J., Guzman-Puyol, S., Domínguez, E., Heredia, A., Heredia-Guerrero, J.A. 2019. Applications and potentialities of Atomic Force Microscopy in fossil and extant plant cuticle characterization. Review of Palaeobotany and Palynology, 268, pages 125–132.
Burgert, I. and Keplinger, T. 2013. Plant micro- and nanomechanics: experimental techniques for plant cell-wall analysis. Journal of Experimental Botany, Vol. 64, No. 15, pp. 4635–4649, doi:10.1093/jxb/ert255.
Chomontowski, C., Podlaski, S. 2020. Impact of sugar beet seed priming using the SMP method on the properties of the pericarp. BMC Plant Biol 20, 32. Doi:10.1186/s12870-020-2246-4.
Dumais, J. 2007. Can mechanics control pattern formation in plants? Current Opinion in Plant Biology, 10:58–62, DOI 10.1016/j.pbi.2006.11.014.
Engleman, M.E. 1960. Ovule and seed development in certain cacti. American Journal of Botany, 47:460-467.
Farahi, R.H., Charrier, A.M., Tolbert, A., Lereu, A.L., Ragauskas, A., Davison, B.H., Passian, A. 2017. Plasticity, elasticity, and adhesion energy of plant cell walls: nanometrology of lignin loss using atomic force microscopy. Scientific Reports | 7: 152 | DOI: 10.1038/s41598-017-00234-4.
Food and Agriculture Organization (2010). FAO statistical Year Book. Available from: http://faostat.fao.org/site/339/default.aspx.
Fellahi, Z.E.B., Hannachi, A., Bouzerzour, H. 2018. Analysis of direct and indirect selection and indices in bread wheat (Triticum aestivum L.) segregating progeny. International Journal of Agronomy, ID 8312857, 11 pages doi.org/10.1155/2018/8312857.
Fishman, M.L., Cooke, P., Hotchkiss, A.T. 2010. Extraction and Characterization of Sugar Beet Polysaccharides. ACS Symposium Series 1043:71-86, DOI: 10.1021/bk-2010-1043.ch006.
Ghosh, N., Chatterjee, A., Smith, D.W. 2009. Scanning electron microscopy in characterizing seeds of some leguminous trees (Proceedings paper). Scanning Microscopy, Vol. 7378.
Gromer, A., Kirby, A.R., Gunning, A.P., Morris, V.J. 2009. Interfacial structure of sugar beet pectin studied by atomic force microscopy. Langmuir. Jul 21;25(14):8012-8. doi: 10.1021/la900483z. PMID: 19374388.
Guha, T., Bhar, R., Ganesan, V., Sen A., Brahmachary, R.L. 2001. Atomic Force Microscopy and Scanning Electron Microscopy reveal genome-dependent ultrastructure of seed surface. Microscopy and Microanalysis, 7:526-529.
Hermann, K., Meinhard, J., Dobrev, P., Linkies, A., Pesek, B., Hess, B., Machácková, I., Fischer, U., Leubner-Metzger, G. 2007. 1-Aminocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds. Journal of Experimental Botany, 58, 3047 – 3060.
Hoffman, J. and Adriana, E. 1989. Cactaceas. Flora Silvestre de Chile. Ed. Fundacion Claudio Gay. 272 pp.
International Seed Testing Association ISTA. 1985. International rules for seed testing. Rules 1985. Seed Science and Technology Vol.13 No.2 pp.299-513.
ISTA. 1995. Understanding seed vigour. In: The ISTA Handbook of Vigour Test Methods, ISTA, Zurich, Switzerland.
Jiang, G.L. 2013. Molecular Markers and Marker-Assisted Breeding in Plants. In: Andersen S.B. (Eds.), Plant Breeding from Laboratories to Fields - May 2013. Doi:10.5772/52583
Kaiser, N., Douches, D., Dhingra, A., Glenn, K.C., Herzig, P.R.H., Stowe, E.C., Swarup, S. 2020. The role of conventional plant breeding in ensuring safe levels of naturally occurring toxins in food crops. Trends in Food Science & Technology. Vol. 100, 51-66. Doi: 10.1016/j.tifs.2020.03.042
Kirby, A.R., Alistair, M.J., Morris, V.J. 2006. Food Biophysics; Dordrecht Vol. 1, Iss. 1, 51-56. DOI: 10.1007/s11483-006-9005-4
Konstankiewicz, K. 2011. Microstructure of plant tissue. In: Gliński J, Horabik J, Lipiec J (eds) Encyclopedia of Agrophysics. Encyclopedia of Earth Sciences Series. Springer, Dordrecht.
Kozlova, L., Petrova, A., Ananchenko, B., and Gorshkova, T. 2019. Assessment of primary cell wall nanomechanical properties in internal cells of non-fixed maize roots. Plants, 8, 172; doi:10.3390/plants8060172.
Kumar, J. and Bahl, P.N. 1992. Direct and indirect selection for yield in chickpea. Euphytica 60, 197–199, https://doi.org/10.1007/BF00039398.
Kuznetsova, T.G., Starodubtseva, M.N., Yegorenkov, N.I., Chizhik, S.A., Zhdanov, R.I. 2007. Atomic force microscopy probing of cell elasticity. Micron 38, 824–833.
Maiti, R.K., Hernandez-Pineiro, J.L., Valdez-Marroquin, M. 1994. Seed ultrastructure and germination of some species of Cactaceae. Fiton 55:97-105.
McGrath, M.J. 2010. Assisted Breeding in Sugar Beets. Sugar Tech 12, 187–193. https://doi.org/10.1007/s12355-010-0051-3
McGrath, L.M., Panella, L. 2018. Sugar beet breeding. Plant Breed. Rev 42: 167–218.
Moraes, R.M.A., Jose, I.C., Ramos, F.G., Barros, E.G., Moreira, M.A. 2006. Biochemical characterization of high protein soybean lines. Pesquisa Agropecuaria B. 41: 725-729 10.1590/S0100-204X2006000500002.
Neher, O.T., Gallian, J.J. 2014. Rhizomania on sugar beet: importance, identification, control. Pacific Northwest Publication 657, U of ID, http://www.cals.uidaho.edu/edComm/pdf/PNW -/PNW657.pdf
Norouzi, P., Sabzehzari, M., Zeinali, Z. 2015. Efficiency of some molecular markers linked to rhizomania resistance gene (rz1) for marker assisted selection in sugar beet. J. Crop Sci. Biotech. 18 (5) : 319 ~ 323, DOI. No. 10.1007/s12892-015-0033-9
Pereira, E.M., Silva, F.M., Val, B.H.P., Pizolato Neto, A., Mauro, A.O., Martins, C.C. and Unêda-Trevisoli, S.H. 2016. Canonical correlations between agronomic traits and seed physiological quality in segregating soybean populations. Genetics and Molecular Research 16 (2), DOI: 10.4238/gmr16029547.
Rashid, N., Zafar, M., Ahmad, M., Ajab Khan, M., Malik, K., Sultana, S., Nasar Shah, S. 2018. Taxonomic significance of leaf epidermis in tribe Trifolieae L. (Leguminosae; Papilionoideae) in Pakistan. Plant Biosystems, 406-416. https://doi.org/10.1080/11263504.2018.1492995.
Spearman, C. 1904. The Proof and Measurement of Association between Two Things. American Journal of Psychology 15(1):72–101. https://doi.org/10.2307/1412159
Trevisani, N., Melo, R.C.D., Colli, M.P., Coimbra, J.L.M., Guidolin, A.F. 2017. Associations between traits in fisalis: a tool for indirect selection of superior plants. Revista Brasileira de Fruticultura., v. 39, n.4: (e-106) DOI 10.1590/0100-29452017 106.