Successive rearing on Sitotroga cerealella Affects Quality of the Parasitoid Wasp Trichogramma embryophagum (Hymenoptera: Trichogrammatidae)

Document Type : Original Research

Authors
1 Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Islamic Republic of Iran.
2 Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Islamic Republic of Iran.
Abstract
Demographic parameters of the parasitoid wasp Trichogramma embryophagum Hartig reared on Sitotroga cerealella (Olivier) were determined for 40 generations (G5-G40). The experiments were done in a growth chamber at 26±2°C, 65±5% RH and photoperiod of 16:8 h (L:D). The results showed that the female longevity decreased significantly during successive production, ranging from 10.68 (in G5) to 9.64 days (in G40). On the other hand, the male longevity decreased significantly in the 20th generation and no significant difference was found from G20 to G40. The oviposition days and mean total fecundity of T. embryophagum decreased as the number of generations increased. Generally, the wasps in earlier generations had longer adult longevity, longer life span, and higher fecundity than later generations. Moreover, sex ratio of T. embryophagum was not significantly different in successive generations. Results of paired bootstrap test indicated that all population growth parameters of T. embryophagum reared on S. cereallela were significantly different in successive generations. The highest and lowest values of the intrinsic rate of increase (r), finite rate of increase (λ), net Reproductive rate (R0), Gross Reproductive Rate (GRR) and mean generation Time (T) of T. embryophagum were observed in G40 and G5, respectively. These results suggest that T. embryophagum wasps reared in sequential generations can be used successfully in biological control programs until the 20th generation without any loss of quality or performance; after that, regular rejuvenation of laboratory population by occasional importing of field-collected parasitoids should be done.

Keywords


1. Antolin, M. F. 1999. A genetic perspective on mating systems and sex ratios of parasitoid wasps. Res. Popul. Ecol., 41: 29-37.
2. Bellutti, N. 2011. Effects of mass rearing on life-history traits of an invasive fruit moth species, Grapholita molesta (Busck). Institute of Forest Entomology, Forestathology and Forest Protection, p. 35. BOKU, Vienna.
3. Cascone, P., Carpenito, S., Slotsbo, S., Iodice, L., Sørensen, J. G., Holmstrup, M. and Guerrieri, E. 2015. Improving the efficiency of Trichogramma achaeae to control Tuta absoluta. BioControl. 60: 761–771.
4. Cerutti, F. and Bigler, F. 1995. Quality assessment of Trichogramma brassicae in the laboratory. Entomol. Exp. Appl., 75: 19-26.
5. Chamaani, N. and Poorjavad, N. 2020. Low efficiency of four indigenous Trichogramma wasp populations, collected from tomato crops, in controlling the invasive pest Tuta absoluta in Iran. Bull. Insectology. 73(2): 171-180.
6. Cônsoli, F., Parra, J. R. and Zucchi, R. 2010. Egg parasitoids in agroecosystems with emphasis on Trichogramma. Springer, The Netherlands.
7. Do Thi Khanh, H., Chailleux, A., Tiradon, M., Desneux, N., Colombel, E. and Tabone, E. 2012. Using new egg parasitoids (Trichogramma spp.) to improve integrated management against Tuta absoluta. EPPO Bull. 42: 249–254.
8. Ebrahimi, E., Pintureau, B. and Shojai, M. 1998. Morphological and enzymatic study of the genus Trichogramma in Iran. J. Appl. Entomol. Pathol. 66(21): 39-43.
9. Fathipour, Y. and Maleknia, B. 2016. Mite Predators. In: Omkar (Ed.), Ecofriendly pest management for food security, Elsevier, San Diego, USA.
10. Freitas Bueno, R. C. O., Freitas Bueno, A., Pratissoli, D., Vieira, S., Oliveira, L. J., Barros, E. M. and Jakoby, G. L. 2006. Biological characteristics of Trichogramma pretiosum (Riley) reared on Anagasta kuehniella (Zeller) for 100 generations. Revista. Ecossistemas. 31: 69-75.
11. Ghaemmaghami, E., Fathipour, Y., Bagheri, A., Talebi, A. A. and Reddy, G. V. P. 2021. Quality control of the parasitoid wasp Trichogramma brassicae (Hymenoptera: Trichogrammatidae) over 45 generations of rearing on Sitotroga cerealella. Insect Sci. 28: 180-190.
12. Grenier, S. and De Clercq, P. 2003. Quality control and production of biological control agents: Theory and testing Procedures. CABI Publishing, Wallingford.
13. Haghani, M. and Fathipour, Y. 2003. The effect of the type of laboratory host on the population growth parameters of Trichogramma embryophagum Hartig (Hym., Trichogrammatidae). J. Agric. Sci. Natur. Resour. 10(2): 117-124.
14. Hassan, S. A. and Zhang, W. Q. 2001. Variability in quality of Trichogramma brassicae (Hymenoptera: Trichogrammatidae) from commercial suppliers in Germany. Biol. Control, 22: 115-121.
15. Kazmer, D. J. and Luck, R. E. 1991. The genetic–mating structure of natural and agricultural populations of Trichogramma. Les Colloques de I’INRA. 56: 117–110.
16. Khanamani, M., Basij, M., and Fathipour, Y. 2021. Effectiveness of factitious foods and artificial substrate in mass rearing and conservation of Neoseiulus californicus (Acari: Phytoseiidae). Inte.J. Acarol., 47(4): 273-280.
17. Khanamani, M., Fathipour, Y., Talebi, A. A. and Mehrabadi, M. 2017. Quantitative analysis of long-term mass rearing of Neoseiulus californicus (Acari: Phytoseiidae) on almond pollen. J Econ. Entomol. 110: 1442-1450.
18. Li, L. L. 1994. Worldwide Use of Trichogramma for biological control in different crops. CAB International, Wallingford, Uk.
19. Li, X. Y., Lei, Q., Hua, H. Q., Song, H. F., Wang, S., Ramirez-Romero, R., et al. 2019. Impact of host suitability on oviposition preference toward fertilized and unfertilized host eggs in two Trichogramma parasitoid species. Entomol. Gen. 39: 313–323.
20. Lü, X., Han, S. and Li, L. 2015. Biochemical analyses of Trichogramma dendrolimi (Hymenoptera: Trichogrammatidae) in vitro and in vivo rearing for 10 generations. Fla. Entomol. 98: 911-915.
21. Lü, X., Han, S., Li, Z. and Li, L. 2017. Biological characters of Trichogramma dendrolimi (Hymenoptera: Trichogrammatidae) reared in vitro versus in vivo for thirty generations. Sci. Rep. 7: 17928.
22. Mirkarimi, A. 2000. Biological control of carob moth with mass release of Trichogramma embryophagum Hartig for pomegranate worm control, the Ectomyelois (Spectrobates) ceratoniae Zell. Iranian J. Agric. Sci., 31: 103-110.
23. Moghaddassi, Y., Ashouri, A., Bandani, A. R., Leppla, N. C. and Shirk, P. D. 2019. Effect of Ephestia kuehniella (Lepidoptera: Pyralidae) larval diet on egg quality and parasitism by Trichogramma brassicae (Hymenoptera: Trichogrammatidae). J. Insect Sci. 19: 1-7.
24. Nordland, D. A., Wu, Z. X. and Greenberg, S. M. 1997. In vitro rearing of Trichogramma minutum Riley (Hym: Trichogrammatidae) for ten generations, with quality assessment comparisons of in vitro and in vivo reared adults. Biol. Control, 9: 201-207.
25. Parra, J. R. P. 2010. Mass rearing of egg parasitoids for biological control programs. In: Consoli, F. L., Parra, J. R. P. and Zucchi, R. A. (Eds.). Egg parasitoids in agroecosystems with emphasis on Trichogramma. Springer Netherlands, Dordrecht.
26. Poorjavad, N., Goldansaz, H., Hosseninaveh, V., Nozari, J., Dehghaniy, H. and Enkegaard, A. 2011. Fertility life table parameters of different strains of Trichogramma spp. collected from eggs of the carob moth Ectomyelois ceratoniae. Entomol. Sci. 14: 245-253.
27. Pratissoli, D., Oliveira, H. N., Gonçalves, J. R., Zanuncio, J. C. and Holtz, A. M. 2004. Changes in biological characteristics of Trichogramma pretiosum (Hym.; Trichogrammatidae) reared on eggs of Anagasta kuehniella (Lep.; Pyralidae) for 23 generations. Biocontrol Sci. Tech. 14(3): 313-319.
28. Razinger, J., Vasileiadis, V. P., Giraud, M., van Dijk, W., Modic, Š., Sattin, M. and Urek, G. 2016. On-farm evaluation of inundative biological control of Ostrinia nubilalis (Lepidoptera: Crambidae) by Trichogramma brassicae (Hymenoptera: Trichogrammatidae) in three European maize-producing regions. Pest Manag. Sci. 72: 246-25.
29. Smith, S. M. 1996. Biological control with Trichogramma: advances, successes, and potential of their use. Annu. Rev. Entomol. 41: 375– 406.
30. Sorati, M., Newman, M. and Hoffmann, A. A. 1996. Inbreeding and incompatibility in Trichogramma nr. brassicae: evidence and implications for quality control. Entomol. Exp. Appl. 78: 283–290.
31. Sørensen, J. G., Addison, M. F. and Terblanche, J. S. 2012. Mass-rearing of insects for pest management: challenges, synergies and advances from evolutionary physiology. Crop Prot. 38: 87–94.
32. Suzuki, Y. and Hiehata, K. 1985. Mating systems and sex ratio in the egg parasitoids, Trichogramma dendrolini and T. papilionis (Hymenoptera: Trichogrammatidae). Anim. Behav. 33: 1223–1227.
33. van Lenteren, J. C. and Bigler, F. 2010. Quality control of mass reared egg parasitoids. In: Consoli, F. L., Parra, J. R. P. and Zucchi, R. A. (Eds.). Egg parasitoids in agroecosystems with emphasis on Trichogramma, Springer Publishing.
34. van Lenteren, J. C. 2012. The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl. 57: 1-20.
35. van Lenteren, J. C., Hale, A., Klapwijk, J. N., van Schelt, J. and Steinberg, S. 2003. Guidelines for quality control of commercially produced natural enemies. In: van Lenteren, J. C. (Ed.). Quality control and production of biological control agents: Theory and testing procedures. CABI Publishing: Wallingford, UK.