Differences among Bacillus velezensis Strains from Biofilm Formation to Competition in Niche Determination on Plant Roots

Document Type : Original Research

Authors
1 Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Islamic Republic of Iran.
2 Molecular Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Islamic Republic of Iran.
3 Department of Plant Protection Research, Khorasan Razavi Agricultural and Natural Resources Research and Education Center (AREEO), Mashhad, Islamic Republic of Iran.
Abstract
Biofilm formation and rhizosphere colonization of the plants are the main infrastructures for the biological control of the plant diseases. Bacteria accumulation in the protective layer, which results from their self-production of Exopolysaccharides (EPS), is called the biofilm. The formation of these complex structures originates from the multicellular behaviors of bacteria. Various elements can play a role in these mechanisms. In this study, we examined biofilm formation, root colonization, and salt tolerance to four concentrations of NaCl in the strains of Bacillus velezensis (Q12, US1, and UR1). The results showed that the biofilm strength plays an important role in the efficiency of tomato root colonization. Furthermore, UR1 that had defects in producing the surfactin, iturin, and fengycin using Ultrahigh-Performance Liquid Chromatography-High Resolution Electrospray Ionization Mass Spectrometry (UHPLC-HRESIMS), was incapable of tolerance to salinity, biofilm formation, competition, and rhizosphere colonization. Confocal Laser Scanning Microscopy (CLSM) studies showed that strains US1 and Q12 differed in the biofilm strength, the position of the bacteria that are located laterally, polar, or both, and root colonization. Q12 was introduced as the best strain in all these experiments. Also, based on the findings of this and previous studies, the possibility to create the subpopulations influenced by genetic diversity in Bacillus velezensis strains during biofilm formation is suggested.

Keywords

Subjects


Ahimou, F., Jacques, P., and Deleu, M. 2000. Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme Microb. Technol., 27(10): 749–754.
Al-Ali, A., Deravel, J., Krier, F., Béchet, M., Ongena, M. and Jacques, P. 2017. Biofilm formation is determinant in tomato rhizosphere colonization by Bacillus velezensis FZB42. Environ. Sci. Pollut. Res., 25(30): 29910-29920.
Bais, H. P., Fall, R., and Vivanco, J. M. 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol., 134(1): 307–319.
Beauregard, P. B., Chai, Y., Vlamakis, H., Losick, R., and Kolter, R. 2013. Bacillus subtilis biofilm induction by plant polysaccharides. PNAS USA, 110(17): E1621-E1630.
Bertin, C., Yang, X., and Weston, L. A. 2003. The role of root exudates and allelochemicals in the rhizosphere. Plant Soil, 256: 67–83.
Branda, S. S., González-Pastor, J. E., Ben-Yehuda, S., Losick, R., and Kolter, R. 2001. Fruiting body formation by Bacillus subtilis. PNAS USA, 98(20): 11621–11626.
Branda, S. S., Vik, S., Friedman, L., and Kolter, R. 2005. Biofilms: the matrix revisited. Trends Microbiol, 13(1): 20 –26.
Cain, M. L.; Bowman, W. D.; and Hacker, S. D. 2011. Chapter 16: Change in communities. ecology (pp. 359–362). Sinauer Associates (Oxford University Press) Publishers.
Das, B. B., and Dkhar, M. S. 2011. Rhizosphere microbial populations and physicochemical properties as affected by organic and inorganic farming practices. Am Eurasian J Agric Environ Sci, 10(2): 140–150.
Deravel, J., Lemiere, S., Coutte, F., Krier, F., Van, H. N., Bechet, M., and Jacques, P. 2014. Mycosubtilin and surfactin are efficient, low ecotoxicity molecules for the biocontrol of lettuce downy mildew. Appl. Microbiol. Biotechnol., 98(14): 6255–6264.
Dragoš, A., Kiesewalter, H., Martin, M., Hsu, C. Y., Hartmann, R., Wechsler, T., Eriksen, C., Brix, S., Drescher, K., Stanley-Wall, N., Kümmerli, R., and Kovács, Á. T. 2018. Division of labor during biofilm matrix production. Curr., 28(12): 1903-1913. e5.
Fan, B., Blom, J., Klenk, H.P., and Borriss, R. 2017. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an "operational group B. amyloliquefaciens" within the B. subtilis species complex. Front. Microbiol., 8(22).
Fan, B., Wang, C., Song, X., Ding, X., Wu, L., Wu, H., Gao, X. and Borriss, R. 2018. Bacillus velezensis FZB42 in 2018: The Gram-Positive model strain for plant growth promotion and biocontrol. Front. Microbiol., 9(2491).
Fujii, M., Shibata, S., and Aizawa, S-I. 2008. Polar, peritrichous, and lateral flagella belong to three distinguishable flagellar families. J. Mol. Biol., 379(2): 273–283.
Henry, G., Deleu, M., Thonart, P., and Ongena, M. 2011. The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related defence responses. Cell. Microbiol., 13(11): 1824–1837.
Kevin, V. J. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil, 255(2): 571–586
Kim, W., Racimo, F., Schluter, J., Levy, S. B., and Foster, K. R. 2014. Importance of positioning for microbial evolution. PNAS USA, 111(16): E1639-E1647.
Kirov, S. M., Castrisios, M. and Shaw, J. G. 2004. Aeromonas flagella (polar and lateral) are enterocyte adhesins that contribute to biofilm formation on surfaces. Infect. Immun., 72(4): 1939–1945.
Kovács, Á T., and Dragoš, A. 2019. Evolved biofilm: review on the experimental evolution studies of Bacillus subtilis pellicles. J. Mol. Biol., 431(23): 4749-4759
Kunst, F., and Rapoport, G. 1995. Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis. J. Bacteriol, 177(9): 2403–2407.
Lugtenberg, B., and Kamilova, F. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol., 63: 541–556.
Luo, C., Zhou, H., Zou, J., Wang, X., Zhang, R., Xiang, Y., and Chen, Z. 2015. Bacillomycin L and surfactin contribute synergistically to the phenotypic features of Bacillus subtilis 916 and the biocontrol of rice sheath blight induced by Rhizoctonia solani. Appl. Microbiol. Biotechnol., 99(4): 1897-1910.
Martin, M., Dragoš, A., Otto, S. B. Schäfer, D., Brix, S., Maróti, G. and Kovács, Á. T. 2020. Cheaters shape the evolution of phenotypic heterogeneity in Bacillus subtilis biofilms. ISME, 14: 2302–2312.
Ma, L., Shi, Y., Siemianowski, O., Yuan, B., Egner, T. K., Mirnezami, S. V., Lind, K. R., Ganapathysubramanian, B., Venditti, V., and Cademartiri, L. 2019. Hydrogel-based transparent soils for root phenotyping in vivo. PNAS USA, 116(22): 11063-11068.
McLoon, A. L., Guttenplan, S. B., Kearns, D. B., Kolter, R., and Losick, R. 2011. Tracing the domestication of a biofilm-forming bacterium. J. Bacteriol., 193(8): 2027-2034.
Ongena, M., and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol,16(3): 115–125.
Otto, S. B., Martin, M., Schäfer, D., Hartmann, R., Drescher, K., Brix, S., Dragoš, A., and Kovács, Á. T. 2020. Privatization of Biofilm Matrix in Structurally Heterogeneous Biofilms. Msystems, 5(4): e00425-20.
Peng, D., Luo, Y., Guo, S., Zeng, H., Ju, S., Yu, Z., and Sun, M. 2009. Elaboration of an electroporation protocol for large plasmids and wild-type strains of Bacillus thuringiensis. J. Appl. Microbiol., 106(6): 1849-1858.
Rigolet, A. 2019. Molecular crosstalk between plant beneficial rhizobacteria: identification of Pseudomonas compounds influencing the growth and antimicrobial potential of Bacillus velezensis. [Master's thesis, University of Liège]. Liège University Library
Ruiu, L. 2020. Plant-Growth-Promoting Bacteria (PGPB) against insects and other agricultural pests. Agron., 10(861).
Velázquez-Hernández, M. L., Baizabal-Aguirre, V. M., and Cruz-Vázquez, F. 2011. Gluconacetobacter diazotrophicus levansucrase is involved in tolerance to NaCl, sucrose and desiccation, and in biofilm formation. Arch. Microbiol., 193 (2): 137-149.
Xavier, J., and Foster, K. R. 2007. Cooperation and conflict in microbial biofilms. PNAS USA, 104(3): 876–881.
Xu, Z., Shao, J., Li, B., Yan, X., Shen, Q., and Zhang, R. 2013. Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation. Appl. Environ. Microbiol., 79(3): 808–815.
Xu, Z., Zhang, H., Sun, X., Liu, Y., Yan, W., Xun, W., Shen, Q., and Zhang, R. 2019. Bacillus velezensis wall teichoic acids are required for biofilm formation and root colonization. Appl. Environ. Microbiol., 85(5): e02116- e02118.
Zaman, M., and Toth, I. 2013. Immunostimulation by synthetic lipopeptide based vaccine candidates: structure–activity relationships. Front. Immunol., 4: 318.
Zeriouh, H., de Vicente, A., Pérez-García, A., and Romero, D. 2014. Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity. Environ. Microbiol., 16(7): 2196–2211.