Aires, A.; E. Rosa, R. Carvalho. 2006. Effect of nitrogen and sulfur fertilization on glucosinolates in the leaves and roots of broccoli sprouts (Brassica oleracea var. italica). J. Sci. Food Agric, 86: 1512–1516.
Bilsborrow, P.E., E.J. Evans, and F.J. Zhao. 1993. The influence of spring nitrogen on yield, yield components and glucosinolate content of autumn sown oilseed rape (Brassica napus). J Agr. Sci. Cambr. 120:219–224.
Anjum N. A., S. S. Gill, S. Umar, I. Ahmad, A. C. Duarte, and E. Pereira 2012. Improving growth and productivity of oleiferous brassicas under changing environment: Significance of nitrogen and sulphur nutrition, and underlying mechanisms. The Scientific World Journal. 12 pages.
Bazylko A, S. Granica, A . Filipek, J. Piwowarski, J. Stefanska, E. Osinska and A.K. Kiss. 2013. Comparison of antioxidant, anti-inflammatory, antimicrobial activity and chemical composition of aqueous and hydroethanolic extracts of the herb of Tropaeolum majus L. Industrial Crops and Products, 50:88-94.
Benyelles B., H. Hocine, A. Fekih, M. Touaibia, A. Muselli, N. Djabou, M. El Amine Dib, B. Tabti and J. Costa 2015. Chemical Composition of the Volatile Components of Tropaeolum majus L. (Garden Nasturtium) from North Western Algeria. Phyto Chem & Bio Sub Journal, 9 (3): 92-97.
Bloem, E.; S. Haneklaus,; E. Schnug. 2007. Comparative effects of sulfur and nitrogen fertilization and post-harvest processing parameters on the glucotropaeolin content of Tropaeolum majus L. J. Sci. Food Agric., 87, 1576–1585.
Butnariu M. and C. Bostan. 2011. Antimicrobial and anti-inflammatory activities of the volatile oil compounds from Tropaeolum majus L. (Nasturtium). Afr. J. Biotechnol.10 (31): 5900–5909.
Chevallier A, K. Dorling. 1996. The encyclopedia of medicinal plants. London: DK Pub.
Doheny Adams T., K. Redeker, V. Kittipo, I. Bancroft and S. E. Hartley 2017. Development of an efficient glucosinolate extraction method. Plant Methods, 13:17.
Das M., S. K. Biswas, S. Zaman and A. Mitra. 2019. Nasturtium (Tropaeolum majus) an annual herb has medicinal property to cure throat sore and it has antivirus property. Int J. Environ. & Agri. Sci., 3:1 3: 016.
Falk K. L., J. G. Tokuhisa, and J. Gershenzon. 2007. The effect of sulfur nutrition on plant glucosinolate content: physiology and molecular mechanisms. Plant Biol. 9, 573–581.
Fletcher A.L., D.R. Wilson, S. Maley, J. McCallium and M. Shaw. 2010. The effect of sulphur and nitrogen fertiliser on levels of antinutritional compounds in kale. Proceedings of the New Zealand Grassland Association 72: 79-84.
Fismes J., P. C. Vong, A. Guckert, and E. Frossard 2000. Influence of sulfur on apparent N-use efficiency, yield and quality of oilseed rape (Brassica napus L.) grown on a calcareous soil. European Journal of Agronomy, 12 (2): 127–141,
Freed R., S.P. Einensmith, S. Gutez, D. Reicosky, V.W. Smail and P. Wolberg. 1989. User’s Guide to MSTAT-C Analysis of Agronomic Research Experiments. Michigan State University, East Lansing, USA.
Fazili I. S., M. Masoodi, S. Ahmad, A. Jamal, J. S. Khan, and M. Z. Abdin, 2010. Interactive effect of sulfur and nitrogen on growth and yield attributes of oilseed crops (Brassica campestris and Eruca sativa Mill.) differing in yield potential. Journal of Plant Nutrition, 33 (8): 1216–1228.
Espinoza S. C., Q. F. Gamarra, F. R. Marianela, S. M. Quispe, R. O. Flores 2018. Effects of Pressure and Temperature on the Extraction of Benzyl Isothiocyanate by Supercritical Fluids from Tropaeolum majus L. Leaves. International Journal of Nutrition and Food Engineering, 11 (5).
Gomez, A. K. and A. A. Gomez, 1984. Statistical Procedures for Agricultural Research. John Wiley and Sons. New York, USA.
Jackson G. D 2000. Effects of Nitrogen and Sulfur on Canola Yield and Nutrient Uptake. Agron. J. 92:644–649.
Jakubczyk K., K. Janda , K. Watychowicz , J. Łukasiak and J. Wolska 2018. Garden nasturtium (Tropaeolum majus L.) a source of mineral elements and bioactive compounds. Rocz Panstw Zakl Hig, 69 (2):119-126.
Jamal A., Y.S. Moon, M.Z. Abdin 2010. Sulphur -a general overview and interaction with nitrogen. Australian Journal of Crop Science 4 (7): 523-529.
Jan A., G. Ahmad, M. Arif, M. T. Jan, K. B. Marwat 2010. Effect of nitrogen and sulfur fertilization on yield components, seed and oil yields of canola. Journal of Plant Nutrition, 33: 381–390.
Kaur S., S.K Gupta, P.S. Sukhija and S.K. Munshi 1990. Accumulation of glucosinolates in developing mustard (Brassica juncea L.) seeds in response to sulphur application. Plant Sci. 66:181–184.
Kim G.C., J.S. Kim, G.M. Kim and S.Y. Choi. 2017. Anti-adipogenic effects of Tropaeolum majus (nasturtium) ethanol extract on 3T3-L1 cells. Food and Nutrition Research, 61 (1): 1-8.
Kim S., T. Matsuo, M. Watanabe, Y. Watanabe. 2002. Effect of nitrogen and sulphur application on the glucosinolate content in vegetable turnip rape (Brassica rapa L.). Soil Science and Plant Nutrition 48 (1): 43-49.
Krumbein A., I. Schonhof, J. Rühlmann, S. Widell. 2001. Influence of sulphur and nitrogen supply on flavour and health-affecting compounds in Brassicaceae. In: Horst W.J. et al. (eds) Plant Nutrition. Developments in Plant and Soil Sciences, vol 92. Springer, Dordrecht, 294-295.
Mailer R.J. 1989. Effects of applied sulfur on glucosinolate and oil content in the seeds of rape (Brassica napus L.) and turnip rape (Brassica rapa L.). Aust. J. Agric. Res. 40 (3): 617-624.
Matallana L., M. Kleinwächter, D. Selmar 2006. Sulfur is limiting the glucosinolate accumulation in nasturtium in vitro plants (Tropaeolum majus L.). Journal of Applied Botany and Food Quality 80, 1 – 5.
Neter, J., M. Khutner, C. Nachtsheim and W. Wasserman, 1996. Applied Linear Statistical Models. 4th Ed. Chicago Irwin Series. Time Mirror. Education Group, pp.111-121.
Nuttall W. F., H. Ukrainetz., J. W. B. Stewart and D. T. Spurr 1987. The effect of nitrogen, sulfur and boron on yield and quality of rapeseed (Brassica napus L. and B. campestris. Can. J. Soil Sci. 672: 545-559.
Omirou M.D., K.K. Papadopoulou, I. Papastylianou, M. Constantinou, D.G. Karpouzas, I. Asimakopoulos, C. Ehaliotis. 2009. Impact of nitrogen and sulfur fertilization on the composition of glucosinolates in relation to sulfur assimilation in different plant organs of broccoli. J. Agric. Food Chem. 57: 9408–9417.
Öztürk Ö. 2010. Effects of source and rate of nitrogen on yield, yield components and quality of winter rapeseed (Brassica napus L.). Chilean Journal of Agricultural Research, 70 (1):132-141.
Palaniswamy U., R. McAvoy, B. Bible, S. Singha, and D. Hill. 1995. Phenylethyl isothiocyanate concentration in watercress (Nastutium officinale R.Br.) is altered by the nitrogen and sulfur ratio in hydroponic solution, p. 280–284. In: DL Gustine and HE Flores (eds.). Phytochemicals and Health. Amer. Soc. Plant Physiol
Pintão A. M., M. S. Pais, H. Coley, L. R. Kelland, I. R. Judson. 1995. In vitro and in vivo antitumor activity of benzyl isothiocyanate: a natural product from Tropaeolum majus. Planta Med. 61(3): 233-6.
Rathke, G.W., O. Christen, and W. Diepenbrock 2005. Effects of nitrogen source and rate on productivity and quality of winter oilseed rape (Brassica napus L.) grown in different crop rotations. Field Crops Res. 94: 103-113.
Rivelli A.R., F. Lelario, R. Agneta, C. Möllers, S. De Maria 2016. Variation of glucosinolates concentration and root growth of horseradish as affected by nitrogen and sulphur supply. Plant Soil Environ. 62 (7): 307–313.
Rosen C.J., V.A. Fritz, G.M. Gardner S.S. Hecht, S.G. Carmella, and P.M. Kenney 2005. Cabbage yield and glucosinolate concentrations as affected by nitrogen and sulfur fertility. Hortscience 40 (5):1493–1498.
Steel, R.G.D.; G.H. Torrie, and D.A. Dickey 1997. Principles and Procedures of Statistics: A Biometrical Approach. 3rd ed. McGraw-Hill, New York.
Scherer, H.W. 2001. Sulphur in crop production. Eur. J. Agron. 14 (2), 81-111.
Schonhof L., D. Blankenburg, S. Muller and A. Krumbein 2007. Sulfur and nitrogen supply influence growth, product appearance, and glucosinolate concentration of broccoli. J. Plant Nutr. Soil Sci. 170, 1-8.
Skubij N., K. Dzida, Z. Jarosz, K. Pitura and M. Jaroszuk-Sieroci´nska. 2020. Nutritional Value of Savory Herb (Satureja hortensis L.) and Plant Response to Variable Mineral Nutrition Conditions in Various Phases of Development. Plants, 9, 706.
Tiwari S., R. Arnold, A. Saxena, S. Pandey, N. Mishra and R. M. Mishra. 2014. A Review on Floral Biology of Tropaeolum Majus L. (Tropaeolaceae) an Ornamental Plant. IJGHC. 3 (2), 722-727.
Tuncay Ö., D. Dursun, B. Yamur and B. Okur 2011. Yield and quality of garden cress affected by different nitrogen sources and growing period African Journal of Agricultural Research 6 (3): 608-617.
Vallejo, F., F.A. Tomas-Barberan, A. Gonzalez Benavente-Garcia and C. Garcia-Viguera. 2003. Total and individual glucosinolate contents in inflorescences of eight broccoli cultivars grown under various climatic and fertilization conditions. J. Sci. Food Agr. 83:307–313.
Valsalam S., P. Agastian, M. V. Arasu, N. A.Al-Dhabi, A. M. Ghilan, K. Kaviyarasu, B. Ravindran, S. W. Chang, S. Arokiyaraj. 2019. Rapid biosynthesis and characterization of silver nanoparticles from the leaf extract of Tropaeolum majus L. and its enhanced in-vitro antibacterial, antifungal, antioxidant and anticancer properties. J. Photochem. Photobiol. B; 191: 65-74.
Wilson, D.R.; J.B. Reid; R.F. Zyskowski; S. Maley; A.J. Pearson; S.D. Armstrong; W.D. Catto and A.D. Stafford. 2006. Forecasting fertiliser requirements of forage brassica crops. Proceedings of the New Zealand Grassland Association 68: 205-210.
Zhao, F., E.J. Evans, P.E. Bilsborrow, and J.K. Syers. 1993. Influence of sulphur and nitrogen on seed yield and quality of low glucosinolate oilseed rape (Brassica napus L). J. Sci. Food Agr. 63:29–37.