1. Aebi, H. 1984. Methods in Enzymology. Acad. Press, Florida: United States of America.
2. Aggarwal, P. K., Kalra, N., Chander, S. and Pathak, H. 2006. Infocrop: A Dynamic Simulation Model for the Assessment of Crop Yields, Losses Due to Pests, and Environmental Impact of Agroecosystems in Tropical Environments I Model Description. J. Agric. Sci., 89: 1–25.
3. Ahmadi, A. and Siosemardeh, A. 2005. Investigation on the Physiological Basis of Grain Yield and Drought Resistance in Wheat: Leaf Photosynthetic Rate, Stomatal Conductance, and Non-Stomatal Limitation. Inter. J. Agric. Biol., 7: 807-811.
4. Ahsan, N., Lee, D. G., Lee, S. H., Lee, K. W., Bahk, J. D. and Lee, B. H. 2007. A Proteomic Screen and Identification of Waterlogging Regulated Proteins in Tomato Roots. Plant Soil, 295: 37–51.
5. Alam, I., Lee, D. G., Kim, K. H., Park, C. H., Sharmin, S. A., Lee, H., Oh, K. W., Yun, B. W. and Lee, B. H. 2010. Proteome Analysis of Soybean Roots under Waterlogging Stress at an Early Vegetative Stage. J. Bio. Sci., 35: 49–62.
6. Bacanamwo, M. and Purcell, L. C. 1999. Soybean Root Morphological and Anatomical Traits Associated with Acclimation to Flooding. Crop Sci., 39: 143-149.
7. Barrick, K. A. and Noble, M. G. 1993. The Iron and Manganese Status of Seven Upper Montane Tree Species in Colorado Following Long Term Waterlogging. J. Ecol., 81: 523-531.
8. Bhatt, R. M., Upreti, K., Divya, M. H., Srilakshmi, B., Pavithra, C. B. and Sadashiva, A. T. 2015. Interspecific Grafting to Enhance Physiological Resilience To flooding Stress in Tomato (Solanum lycopersicum L.). Sci. Hortic., 182: 8–17.
9. Board, J. 2008. Waterlogging Effects on Plant Nutrient Concentrations in Soybean. J. Plant Nutr., 31(5): 828-838.
10. Boru, G., VanToai, T., Alves, J., Hua, D. and Knee, M. 2003. Responses of Soybean to Oxygen Deficiency and Elevated Root-Zone Carbon Dioxide Concentration. Ann. Bot., 91: 447-453.
11. Boru, G., VanToai, T., Alves, J. and Hua, D. 1997. Flooding Injuries in Soybean Are Caused by Elevated Carbon Dioxide Levels in the Root Zone. Fifth National Symposium on Stand Establishment; May 31, Ohio State University, Columbus Ohio. USA.
12. Boughalleb, F. and Hajlaoui, H. 2011. Physiological and Anatomical Changes Induced by Drought in Two Olive Cultivars (CV Zalmati and Chemlali). Acta. Physiol. Plant, 33: 53–65.
13. Bradford, M. M. 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem., 72: 248-254.
14. Chang, W. W. P., Huang, L., Shen, M., Webster, C., Burlingame, A. M. and Roberts, J. K. M. 2000. Patterns of Protein Synthesis and Tolerance of Anoxia in Root Tips of Maize Seedlings Acclimated to A Low Oxygen Environment, and Identification of Proteins by Mass Spectrometry. Plant Physiol., 122: 295–318.
15. Colmer, T. D. and Voesenek, L. A. C. J. 2009. Flooding Tolerance: Suites of Plant Traits in Variable Environments. Funct. Plant Biol., 36: 665-681.
16. Colla, G., Rouphael, Y., Leonardi, C. and Bie, Z. 2010. Role of Grafting in Vegetable Crops Grown under Saline Conditions. Sci. Hortic., 127: 147–155.
17. Cornelious, B. 2003. Phenotypic Evaluation and Molecular Basis for Waterlogging Tolerance in Southern Soybean Populations. Dissertation, University of Arkansas.
18. Drew, M. C. 1997. Oxygen Defi Ciency and Root Metabolism: Injury and Acclimation under Hypoxia and Anoxia. Annu. Rev. Plant Physiol. Plant Mol. Biol., 48: 223–250.
19. Dhopte, A. M. and Manuel, L. M. 2002. Principles and Techniques for Plant Scientists. Updesh Purohit for Agribios, Odhpur, India, p.373.
20. Dubey, H., Bhatia, G., Pasha, S. and Grover, A. 2003. Proteome Maps of Flood-Tolerant FR 13A and Flood-Sensitive IR 54 Rice Types Depicting Proteins Associated with O2 Deprivation Stress and Recovery Regimes. Curr. Sci., 84: 83–89.
21. Evans, D. 2003. Aerenchyma Formation. New Phytol., 161: 35-49.
22. Fiedler, S., Vepraskas, M. J., Richardson, J. L. 2007. Soil redox potential: importance, field measurements, and observations. Adv. Agron., 94: 1-54.
23. Genty, B., Briantais, J. M. and Baker, N. B. 1989. The Relationship between the Quantum Yield of Photosynthetic Electrontransport and Quenching of Chlorophyll Fluorescence. Biochim. Biophys. Acta., 990: 87-92.
24. Greenway, H., Armstrong, W. and Colmer, T. D. 2006. Conditions Leading to High CO2 (>5 kPa) in Waterlogged-Flooded Soils and Possible Effects on Root Growth and Metabolism. Ann. Bot., 98: 9-32.
25. Guidi, L. and Soldatini, F. 1997. Chlorophyll fluorescence and gas exchanges in flooded soybean and sunflower plants. Plant Physiol. Biochem., 35 :713-717.
26. Heatherly, L. G. and Pringle, H. C. 1991. Soybean Cultivars’ Response to Flood Irrigation of Clay Soil. Agron. J., 83: 231-236.
27. Henshwa, T. L., Gilbert, R. A., Scholberg, J. M. S. and Sinclair, T. R. 2007a. Soya Bean (Glycine max L. Merr.) Genotype Response to Early-season Flooding: I. Root and Nodule Development. J. Agron. Crop Sci., 193: 177-188.
28. Jackson, M.B. and Hall, K.C. 1987. Early stomatal closure in waterlogged pea plants as mediated by abscisic acid in the absence of foliar water deficits. Plant Cell Environ. 10: 121-130.
29. Keatinge, J. D. H., Lin, L. J., Ebert, A. W., Chen, W. Y., Hughes, J., Aluthe, G. C., Wang, J. F. and Ravishankar, M. 2014. Overcoming Biotic and Abiotic Stresses in the Solanaceae Through Grafting: Current Status and Future Perspectives. Inter. J. Agric. Sustain., 30(4): 272–287.
30. Keneni, G., Asmamaw, B. and Jarso, M. 2001. Efficiency of Drained Selection Environments for Improving Grain Yield in Faba Bean under Undrained Target Environments on Vertisol. Euphytica, 122: 279-285.
31. Khoshbakht, D., Asghari, M. R. and Haghighi, M. 2018. Effects of Foliar Applications of Nitric Oxide and Spermidine on Chlorophyll Fluorescence, Photosynthesis and Antioxidant Enzyme Activities of Citrus Seedlings under Salinity Stress. Photosynthetica, 56(4): 1313-1325.
32. Klok, E. J., Wilson, I. W., Wilson, D., Chapman, S. C., Ewing, R. M., Somerville, S. C., Peacock, W. J., Dolferus, R. and Dennis, E. S. 2002. Expression Profi Le Analysis of the Low-Oxygen Response in Arabidopsis Root Cultures. Plant Cell, 14: 2481–2494.
33. Koleva, I. I., van Beek, T. A., Linssen, J. P. H., de Groot, A. and Evstatieva, L. N. 2002. Screening of Plant Extracts for Antioxidant Activity: A Comparative Study on Three Testing Methods. Phytochem. Anal., 13: 8-17.
34. Liao, C. T. and Lin, C. H. 1996. Photosynthetic Response of Grafted Bitter Melon Seedling to Flood Stress. Environ. Exp. Bot., 36: 167–172.
35. Linkermer, G., Beard, J. E. and Musgrave, M. E. 1998. Waterlogging Effects on Growth and Yield Components in Late-Planted Soybean. Crop Sci., 38(6): 1576-1584.
36. Liu, F., VanToai, T., Moy, L. P., Bock, G., Linford, L. D. and Quackenbush, J. 2005. Global Transcription Profiling Reveals Comprehensive Insights into Hypoxic Response in Arabidopsis. Plant Physiol., 137: 1115–1129.
37. Murillo Amador, B., Yamada, S., Yamaguchi, T., Rueda Puente, E., Avila Serrano, N., GarcVa Hernandez, J. L., Lopez Aguilar, R., Troyo Dieguez, E. and Nieto Garibay, A. 2007. Influence of Calcium Silicate on Growth, Physiological Parameters and Mineral Nutrition in Two Legume Species under Salt Stress. J. Agron. Crop Sci., 193(6): 413-421.
38. Polacik, K.A. and Maricle, B.R. 2013. Effects of flooding on photosynthesis and root respiration in saltcedar (Tamarix ramosissima), an invasive shrub. Environ & Exp. Bot., 89: 19–27.
39. Pessarakli, M. 2010. Handbook of Plant and Crop Stress. CRC Press, New York: United States of America.
40. Rhine, M., Stevens, G., Shannon, G., Wrather, A. and Sleper, D. 2010. Yield and Nutritional Responses to Waterlogging of Soybean Cultivars. Irrig. Sci., 28: 135-142.
41. Rivero, R. M., Ruiz, J. M., Garcıa, P. C., Lopez, L., Sanchez, E. and Romero, L. 2001. Resistance to Cold and Heat Stress: Accumulation of Phenolic Compounds in Tomato and Watermelon Plants. Plant Sci., 160(2): 315-321.
42. Sachs, M. M., Subbaiah, C. C. and Saab, I. N. 1996. Anaerobic Gene Expression and Flooding Tolerance in Maize. Environ. Exp. Bot., 47: 1–15.
43. Schwarz, D., Rouphael, Y., Colla, G. and Venema, J. H. 2010. Grafting as a Tool to Improve Tolerance of Vegetables to Abiotic Stresses: Thermal Stress, Water Stress and Organic Pollutants. Sci. Hortic., 127: 162–171.
44. Scott, H. D., DeAngulo, J., Daniels, M. and Wood, L. 1989. Flood Duration Effects on Soybean Growth and Yield. Agron. J., 81: 631-636.
45. Scott, H. D., Oosterhuis, D. M., Hampton, R. E. and Wullschleger, S. D. 1990. Physiological Response of Two Soybeans [Glycine max (L.) Merr.] Cultivars to Short-Term Flooding. Environ. Exp. Bot., 30: 85-92.
46. Setter, T. L. and Waters, I. 2003. Review of Prospects for Germplasm Improvement for Waterlogging Tolerance in Wheat, Barley and Oats. Plant Soil, 253: 1-34.
47. Singleton, V. L. and Rossi, J. A. 1965. Colorimetry of Total Phenolics with Phosphomolybdic-phosphotungstic Acid Reagents. Am. J. Enol. Vitic., 16: 144-158.
48. Stanley, C., Kaspar, T. and Taylor, H. 1980. Soybean Top and Root Response to Temporary Water Tables Imposed at Three Different Stages of Growth. Agron. J., 72: 341-346.
49. Striker, G. G., Insausti, P., Grimoldi, A. A., Ploschuk, E. L. and Vasellati, V. 2005. Physiological and Anatomical Basis of Differential Tolerance to Soil Flooding of Lotus corniculatus L. and Lotus glaber Mill. Plant Soil, 276: 301-311.
50. Smethurst, C. F., Garnet, T., Shabala, S. 2005. Nutrtion and chorophyll fluorescence responses of Lucerne to waterlogging subsequent recovery. Plant Soil, 270 (1-2): 31-45.
51. Subbaiah, C. C. and Sachs, M. M. 2003. Molecular and Cellular Adaptations of Maize to Flooding Stress. Ann. Bot., 91: 119–127.
52. Sullivan, M., VanToai, T., Fausey, N., Beuerlein, J., Parkinson, R. and Soboyejo, A. 2001. Evaluating On-Farm Flooding Impacts on Soybean. Crop Sci., 41: 93-100.
53. Thomas, A., Guerreiro, S. and Sodek, L. 2005. Aerenchyma Formation and Recovery from Hypoxia of the Flooded Root System of Nodulated Soybean. Ann. Bot., 96: 1191-1198.
54. Upadhyay, R. K. 2016. How Rice (Oryza sativa L.), A Semi-Aquatic Plant Adapts to Natural Flood or Submerged Condition? A Physiological Perspective. Sains Malays., 45(6): 879-882.
55. Van Toai, T. T., Hoa, T. C., Hue, N. N., Nguyen, H. T., Shannon, J. G. and Rahman, M. A. 2010. Flooding Tolerance of Soybean [Glycine max L.] Germplasm from Southeast Asia under Field and Screen-House Environments. Open Agric. J., 4: 38-46.
56. Visser, E. J., Cohen, W. J. D., Barendse, G. W. M., Blom, C. W. M. and Voesenek, L. A. C. 2004. An Ethylene-Mediated Increase in Sensitivity to Auxin Induces Adventitious Root Formation in Flooded Rumex Palustris. Plant Physiol., 112: 1687-1692.
57. Wright, A. J., de Kroon, H., Buchmann, T., Ebeling, A., Eisenhauer, N., Fischer, C., Hildebrandt, A., Ravenek, J., Roscher, C. and Weigelt, A. 2017. Plants are Less Negatively Affected by Flooding When Growing in Species-Rich Plant Communities. New Phytol., 213(2): 645-656.
58. Yu, X. Q., Luo, N., Yan, J. P., Tang, J. C. And Liu, S. W. 2012. Differential Growth Response and Carbohydrate Metabolism of Global Collection of Perennial Ryegrass Accessions to Submergence and Recovery Following De-Submergence. Plant Physiol., 169: 1040-1049.