Aitzetmuller, K., Werner, G., Ivanov, S. 1997. Seed oils of Nigella species and of closely related genera. OCL. Oléagineux, corps gras, lipides 4: 385–388.
Allen, R. 1998. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56.
AOCS. 1993. Official Methods and Recommended Practices; The American Oil Chemists Society: Champaign, IL 113–168.
Ashrafi, E., Razmjoo, K. 2010. Effect of irrigation regimes on oil con- tent and composition of safflower (Carthamus tinctorius L.) cultivars. J. Am. Oil Chem. Soc. 87: 499–506.
Baldini, M., Giovanardi, R., Tahmasebi Enferadi, S., Vannozzi, G.P. 2002. Effects of water regime on fatty acid accumulation and final fatty acid composition in the oil of standard and high oleic sunflower hybrids. Ital. J. Agron. 6: 119–126.
Bannayan, M., Najafi, F., Azizi, M., Tabrizi, L., Rastgoo, M. 2008. Yield and seed quality of Plantago ovata and Nigella sativa under different irrigation treatments. Ind. Crops Prod. 27: 11–16. https://doi.org/10.1016/j.indcrop.2007.05.002
Bettaieb, I., Knioua, S., Hamrouni, I., Limam, F., Marzouk, B. 2011. Water-deficit impact on fatty acid and essential oil composition and antioxidant activities of cumin (Cuminum cyminum L.) aerial parts. J. Agric. Food Chem. 59: 328–334. https://doi.org/10.1021/jf1037618
Bettaieb, I., Zakhama, N., Wannes, W.A., Kchouk, M.E., Marzouk, B. 2009. Water deficit effects on Salvia officinalis fatty acids and essential oils composition. Sci. Hortic. 120: 271–275. https://doi.org/10.1016/j.scienta.2008.10.016
Bettaieb, I., Jabri-Karoui, I., Hamrouni-Sellami, I., Bourgou, S., Limam, F., Marzouk, B. 2012. Effect of drought on the biochemical composition and antioxidant activities of cumin (Cuminum cyminum L.) seeds. Ind. Crops Prod. 36: 238–245. https://doi.org/10.1016/j.indcrop.2011.09.013
Bor, M., Özdemir, F., Türkan, I. 2003. The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Sci. 164: 77–84. https://doi.org/10.1016/S0168-9452(02)00338-2
D’Antuono, L.F., Moretti, A., Lovato, A.F.S. 2002. Seed yield, yield components, oil content and essential oil content and composition of Nigella sativa L. and Nigella damascena L. Ind. Crops Prod. 15: 59–69. https://doi.org/10.1016/S0926-6690(01)00096-6
De Abreu, I.N., Mazzafera, P. 2005. Effect of water and temperature stress on the content of active constituents of Hypericum brasiliense Choisy. Plant Physiol. Biochem. 43: 241–248. https://doi.org/10.1016/j.plaphy.2005.01.020
Dewanto, V., Wu, X., Liu, R.H. 2002. Processed sweet corn has higher antioxidant activity. J. Agric. Food Chem. 50: 4959–4964. https://doi.org/10.1021/jf0255937
Eskandari, H., Hamid, A., Alizadeh-Amraie, A. 2015. Development and maturation of sesame (Sesamum indicum) seeds under different water regimes. Seed Sci. Technol. 43: 269–272. https://doi.org/10.15258/sst.2015.43.2.03
Farooq, M., Hussain, M., Wahid, A., Siddique, K.H.M. 2012. Drought stress in plants: An overview, in: Plant Responses to Drought Stress: From Morphological to Molecular Features. Springer-Verlag Berlin Heidelberg, pp. 1–33. https://doi.org/10.1007/978-3-642-32653-0_1
Fico, G., Braca, A., Tomè, F., Morelli, I. 2000. Phenolic derivatives from Nigella damascena seeds. Pharm. Biol. 38: 371–373. https://doi.org/10.1076/phbi.38.5.371.5967
Geerts, S., Raes, D. 2009. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agric. Water Manag. https://doi.org/10.1016/j.agwat.2009.04.009
Ghamarnia, H., Jalili, Z. 2013. Water stress effects on different Black cumin (Nigella sativa L.) components in a semi-arid region. Int. J. Agron. Plant Prod. 4: 753–762.
Ghamarnia, H., Khosravy, H., Sepehri, S. 2010. Yield and water use efficiency of (Nigella sativa L.) under different irrigation treatments in a semi arid region in the West of Iran. J. Med. Plants Res. 4: 1612–1616. https://doi.org/10.5897/JMPR09.376
Ghamarnia, H., Miri, E., Ghobadei, M. 2014. Determination of water requirement, single and dual crop coefficients of black cumin (Nigella sativa L.) in a semi-arid climate. Irrig. Sci. 32: 67–76. https://doi.org/10.1007/s00271-013-0412-2
Gharibi, S., Tabatabaei, B.E.S., Saeidi, G., Goli, S.A.H. 2016. Effect of Drought Stress on Total Phenolic, Lipid Peroxidation, and Antioxidant Activity of Achillea Species. Appl. Biochem. Biotechnol. 178: 796–809. https://doi.org/10.1007/s12010-015-1909-3
Ghassemi-Golezani, K., Lotfi, R. 2013. Influence of water stress and pod position on pil and protein accumulation in soybean grains. Int. J. Agron. Plant Prod. 4: 2341–2345.
Goli, S.A.H., Sahri, M.M., Kadivar, M. 2008. Enzymatic interesterification of structured lipids containing conjugated linoleic acid with palm stearin for possible margarine production. Eur. J. Lipid Sci. Technol. 110: 1102–1108. https://doi.org/10.1002/ejlt.200800134
Golkar, P., Nourbakhsh, V. 2019. Analysis of genetic diversity and population structure in Nigella sativa L. using agronomic traits and molecular markers (SRAP and SCoT). Ind. Crops Prod. 130: 170–178. https://doi.org/10.1016/j.indcrop.2018.12.074
Harwood, J.L. 1996. Recent advances in the biosynthesis of plant fatty acids. Biochim. Biophys. Acta - Lipids Lipid Metab. https://doi.org/10.1016/0005-2760(95)00242-1
Hatano, T., Kagawa, H., Yasuhara, T., Okuda, T. 1988. Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. Chem. Pharmacol 36: 1090–1097.
Hendawy, S., El-Sherbeny, S., Hussein, M., Khalid, K., Ghazal, G. 2012. Response of Two Species of Black Cumin to Foliar Spray Treatments. Aust. J. Basic Appl. Sci. 6: 636–642.
Hernández, J.A., Jiménez, A., Mullineaux, P., Sevilla, F. 2000. Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant, Cell Environ. https://doi.org/10.1046/j.1365-3040.2000.00602.x
Jabbour, F., Udron, M., Le Guilloux, M., Gonçalves, B., Manicacci, D., Nadot, S., Damerval, C. 2015. Flower development schedule and AGAMOUS -like gene expression patterns in two morphs of Nigella damascena (Ranunculaceae) differing in floral architecture. Bot. J. Linn. Soc. 178: 608–619. https://doi.org/10.1111/boj.12297
Kabiri, R., Nasibi, F., Farahbakhsh, H. 2014. Effect of Exogenous Salicylic Acid on Some Physiological Parameters and Alleviation of Drought Stress in Nigella sativa Plant under Hydroponic Culture, Plant Protect. Sci. https://doi.org/10.17221/56/2012-PPS
Kanter, M., Coskun, O., Uysal, H. 2006. The antioxidative and antihistaminic effect of Nigella sativa and its major constituent, thymoquinone on ethanol-induced gastric mucosal damage. Arch. Toxicol. 80: 217–224. https://doi.org/10.1007/s00204-005-0037-1
Karim, M., Himel, R., Ferdush, J., Zakaria, M. 2017. Effect of Irrigation Levels on Yield Performance of Black Cumin. Int. J. Environ. Agric. Biotechnol. 2: 960–966. https://doi.org/10.22161/ijeab/2.2.52
Lamaoui, M., Jemo, M., Datla, R., Bekkaoui, F. 2018. Heat and drought stresses in crops and approaches for their mitigation. Front. Chem. 6: 26. https://doi.org/10.3389/fchem.2018.00026
Laribi, B., Bettaieb, I., Kouki, K., Sahli, A., Mougou, A., Marzouk, B. 2009. Water deficit effects on caraway (Carum carvi L.) growth, essential oil and fatty acid composition. Ind. Crops Prod. 30: 372–379. https://doi.org/10.1016/j.indcrop.2009.07.005
Liu, L., Guan, L. 2016. A Review of Fatty Acids and Genetic Characterization of Safflower (Carthamus tinctorius L.) Seed Oil. Org. Chem. Curr. Res. 5. https://doi.org/10.4172/2161-0401.1000160
Majeed, A., Muhammad, Z., Ahmad, H., Rehmanullah, Hayat, S.S.S., Inayat, N., Siyyar, S. 2020. Nigella sativa L.: Uses in traditional and contemporary medicines – An overview. Acta Ecol. Sin. https://doi.org/10.1016/j.chnaes.2020.02.001
Matthaus, B., Musa Özcan, M. 2011. Fatty Acids, Tocopherol, and Sterol Contents of Some Nigella Species Seed Oil, Czech J. Food Sci. https://doi.org/10.17221/206/2008-CJFS
Merajipoor, M., Movahhedi Dehnavi, M., Salehi, A., Yadavi, A. 2020. Improving grain yield, water and nitrogen use efficiency of Nigella sativa with biological and chemical nitrogen under different irrigation regimes. Sci. Hortic. 260: 108869. https://doi.org/10.1016/j.scienta.2019.108869
Navarro, J.M., Flores, P., Garrido, C., Martinez, V. 2006. Changes in the contents of antioxidant compounds in pepper fruits at different ripening stages, as affected by salinity. Food Chem. 96: 66–73. https://doi.org/10.1016/j.foodchem.2005.01.057
Ozer, H., Coban, F., Sahin, U., Ors, S. 2020. Response of black cumin (Nigella sativa L.) to deficit irrigation in a semi-arid region: Growth, yield, quality, and water productivity. Ind. Crops Prod. 144. https://doi.org/10.1016/j.indcrop.2019.112048
Piras, A., Rosa, A., Marongiu, B., Porcedda, S., Falconieri, D., Dessì, M.A., Ozcelik, B., Koca, U. 2013. Chemical composition and in vitro bioactivity of the volatile and fixed oils of Nigella sativa L. extracted by supercritical carbon dioxide. Ind. Crops Prod. 46: 317–323. https://doi.org/10.1016/j.indcrop.2013.02.013
Rchid, H., Nmila, R., Bessière, J. M., Sauvaire, Y., Chokaïri, M. 2004. Volatile Components of Nigella damascena L. and Nigella sativa L. Seeds. Artic. J. Essent. Oil Res. 16: 585–587. https://doi.org/10.1080/10412905.2004.9698804
Reiahisamani, N., Esmaeili, M., Khoshkholgh Sima, N.A., Zaefarian, F., Zeinalabedini, M. 2018. Assessment of the oil content of the seed produced by Salicornia L., along with its ability to produce forage in saline soils. Genet. Resour. Crop Evol. 65: 1879–1891. https://doi.org/10.1007/s10722-018-0661-2
SAS, 2004. Statistical Analysis System, SAS Institute Inc. SAS/ACCESS®.
Sgherri, C., Cosi, E., Navari-Izzo, F. 2003. Phenols and antioxidative status of Raphanus sativus grown in copper excess. Physiol. Plant. 118: 21–28. https://doi.org/10.1034/j.1399-3054.2003.00068.x
Shahbazi, E. 2019. Genotype selection and stability analysis for seed yield of Nigella sativa using parametric and non-parametric statistics. Sci. Hortic. 253:172–179. https://doi.org/10.1016/j.scienta.2019.04.047
Smaoui, A., Chérif, A. 2000. Changes in molecular species of triacylglycerols in developing cotton seeds under salt stress, in: Biochemical Society Transactions. pp. 902–905. https://doi.org/10.1042/bst0280902
Telci, I., Sahin-Yaglioglu, A., Eser, F., Aksit, H., Demirtas, I., Tekin, S. 2014. Comparison of seed oil composition of Nigella sativa L. and N. damascena L. during seed maturation stages. JAOCS, J. Am. Oil Chem. Soc. 91: 1723–1729. https://doi.org/10.1007/s11746-014-2513-3
Tutin, T.G., Heywood, V.H., Burges, N.A., Valentine, D.H., Walters, S.M., Webb, D.A. 1964. In: Flora Europaea. Cambridge University Press, Cambridge, Great Britain,.
UN DESA, 2019. United Nations, Department of Economic and Social Affairs, Population
Division. World Population Prospects 2019: Highlights (ST/ESA/SERA/423).
Xu, X.Q., Beardall, J. 1997. Effect of salinity on fatty acid composition of a green microalga from an antarctic hypersaline lake. Phytochemistry 45: 655–658. https://doi.org/10.1016/S0031-9422(96)00868-0
Yeilaghi, H., Arzani, A., Ghaderian, M., Fotovat, R., Feizi, M., Pourdad, S.S. 2012. Effect of salinity on seed oil content and fatty acid composition of safflower (Carthamus tinctorius L.) genotypes. Food Chem. 130: 618–625. https://doi.org/10.1016/j.foodchem.2011.07.085
Zhishen, J., Mengcheng, T., Jianming, W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64: 555–559. https://doi.org/10.1016/S0308-8146(98)00102-2