Response of Soil Microbial Communities to Different Doses of Glyphosate and Sulfosulfuron in a Calcareous Soil

Document Type : Original Research

Authors
1 Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Islamic Republic of Iran.
2 Weed Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Queensland, Gatton 4343, Australia.
3 Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, Shiraz, Islamic Republic of Iran.
4 Department of Crop Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Islamic Republic of Iran.
5 Queensland Alliance for Agriculture and Food Innovation and the School of Agriculture and Food Sciences, The University of Queensland, Gatton 4343, Queensland, Australia.
Abstract
To investigate the response of soil microbial populations to different doses of glyphosate and sulfosulfuron, a factorial experiment based on a complete block design was conducted at Shiraz University, Iran. The factors included different herbicides and dose rates (glyphosate at 0, 540, 1,080, and 4,320 g ae ha-1 and sulfosulfuron at 0, 12.5, 25, and 50 g ai ha-1), and time of measurements (4, 15, 45, and 65 days after herbicides spray). Microbial respiration, microbial biomass carbon, metabolic quotient, dehydrogenase activity, and aerobic heterotrophic bacteria were measured in soil samples. The results showed that microbial respiration, microbial biomass carbon and metabolic quotient were highest for glyphosate 1,080 g ae ha-1 at 4 days after herbicide application. Dehydrogenase activity had a decreasing trend in all herbicide treatments in comparison with the control treatment in all measuring times, except 4 days after spraying. There was no significant difference in dehydrogenase activity between herbicide treatments. The effect of sulfosulfuron on microbial respiration and metabolic quotient was not significant, whereas time and its interaction with herbicide dose rate affected these two variables significantly. Generally, all the measured indices for sulfosulfuron and glyphosate treatments decreased with time after herbicide application. Sulfosulfuron at 50 g ha-1 and glyphosate at 4,320 g ha-1 had the lowest amounts of aerobic heterotrophic bacteria after 65 days, decreased by 23.7 and 50%, respectively compared with the control. Our results demonstrate that the effects of herbicides on soil microbial communities are strongly related to the herbicide dose and the time after herbicide spray. In conclusions, the herbicides at doses more than the recommended doses showed inhibitory effects on soil microbial communities in the alkaline soil, where the inhibitory effect was more at 4,320 g ae ha-1 glyphosate.

Keywords

Subjects


Accinelli, C., Koskinen, W. C., Seebinger, J. D., Vicari, A., and Sadowsky, M. J. 2005. Effects of incorporated corn residues on glyphosate mineralization and sorption in soil. J. Agric. Food Chem., 53(10): 4110-4117.
Accinelli, C., Screpanti, C., Dinelli, G., and Vicari, A. 2002. Short-time effects of pure and formulated herbicides on soil microbial activity and biomass. Int J Environ An Ch., 82(8-9): 519-527.
Adhikary, P., Shil, S., and Patra, P. S. 2014. Effect of herbicides on soil microorganisms in transplanted chilli. Glob. J. Biol. Agric. Health Sci., 3(1); 236-238.
Adomako, M. O. 2016. Effect of some commonly used herbicides on soil microbial population (Doctoral dissertation).
Ahemad, M., and Saghir, K. M. 2011. Response of greengram [Vigna radiata (L.) Wilczek] grown in herbicide-amended soil to inoculation with Bradyrhizobium sp.(vigna) MRM6. J. Agric. Sci. Tech,.13: 1209-1222.
Anderson, T. H. 2003. Microbial eco-physiological indicators to asses soil quality. Agric. Ecosys and. Environ., 98(1-3): 285-293.
Andréa, M. M. D., Peres, T. B., Luchini, L. C., Bazarin, S., Papini, S., Matallo, M. B., and Savoy, V. L. T. 2003. Influence of repeated applications of glyphosate on its persistence and soil bioactivity. Pesqui. Agropecu. Bras., 38(11): 1329-1335.
Araújo, A. D., Monteiro, R. T. R., and Abarkeli, R. B. 2003. Effect of glyphosate on the microbial activity of two Brazilian soils. Chemosphere, 52(5): 799-804.
Avidano, L., Gamalero, E., Cossa, G. P., and Carraro, E. 2005. Characterization of soil health in an Italian polluted site by using microorganisms as bioindicators. Appl. Soil Ecol., 30(1): 21-33.
Benbrook, C. M. 2016. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur., 28(1): 3.
Blagodatskaya, E., Blagodatsky, S., Anderson, T. H., and Kuzyakov, Y. 2014. Microbial growth and carbon use efficiency in the rhizosphere and root-free soil. PloS one, 9(4): e93282.
Bolter, M., Bloem, J., Meiners, K., and Moller, R. 2002. Enumeration and biovolume determination of microbial cells–a methodological review and recommendations for applications in ecological research. Biol. Fert. Soils, 36(4): 249-259.
Borggaard, O. K., and Gimsing, A. L. 2008. Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Manag. Sci., 64(4): 441-456.
Bottrill, D., Ogbourne, S. M., Citerne, N., Smith, T., Farrar, M. B., Hu, H. W., ... and Bai, S. H. 2020. Short-term application of mulch, roundup and organic herbicides did not affect soil microbial biomass or bacterial and fungal diversity. Chemosphere, 244: 125436.
Brown, H. M. 1990. Mode of action, crop selectivity, and soil relations of the sulfonylurea herbicides. Pest Manag. Sci., 29(3): 263-281.
Busse, M. D., Ratcliff, A. W., Shestak, C. J., and Powers, R. F. 2001. Glyphosate toxicity and the effects of long-term vegetation control on soil microbial communities. Soil Biol. Biochem., 33(12-13): 1777-1789.
da Silva Cerozi, B., and Fitzsimmons, K. 2016. The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution. Bioresour. Technol., 219: 778-781.
Dennis, P. G., Kukulies, T., Forstner, C., Orton, T. G., and Pattison, A. B. 2018. The effects of glyphosate, glufosinate, paraquat and paraquat-diquat on soil microbial activity and bacterial, archaeal and nematode diversity. Sci. Rep., 8(1): 2119.
Dilly, O., and Munch, J. C. 1998. Ratios between estimates of microbial biomass content and microbial activity in soils. Biol. Fertil. Soils, 27(4): 374-379.
Dobbelaere, S., Vanderleyden, J., and Okon, Y. 2003. Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit. Rev. Plant Sci., 22(2): 107-149.
Domsch, K. H., Jagnow, G., and Anderson, T. H. 1983. An ecological concept for the assessment of side-effects of agrochemicals on soil microorganisms. In Residue Reviews (pp. 65-105). Springer, New York, NY.
Druille, M., García-Parisi, P. A., Golluscio, R. A., Cavagnaro, F. P., and Omacini, M. 2016. Repeated annual glyphosate applications may impair beneficial soil microorganisms in temperate grassland. Agric. Ecosys. Environ., 230: 184-190.Du, Z., Zhu, Y., Zhu, L., Zhang, J., Li, B., Wang, J., ... and Cheng, C. 2018. Effects of the herbicide mesotrione on soil enzyme activity and microbial communities. Ecotoxicol. Environ. Saf., 164: 571-578.
Duke, S. O., Lydon, J., Koskinen, W. C., Moorman, T. B., Chaney, R. L., and Hammerschmidt, R. 2012. Glyphosate effects on plant mineral nutrition, crop rhizosphere microbiota, and plant disease in glyphosate-resistant crops. J. Agric. Food Chem., 60(42): 10375-10397.
Ferreira, E. P. D. B., and Didonet, C. C. G. M. 2012. Mulching and cover crops effects on the soil and rhizosphere-associated bacterial communities in field experiment. J. Agr. Sci. Tech., 14: 671-681.
Gill, J. P. K., Sethi, N., and Mohan, A. 2017. Analysis of the glyphosate herbicide in water, soil and food using derivatising agents. Environ. Chem. Let., 15(1): 85-100.
Gomez, E., Ferreras, L., Lovotti, L., and Fernandez, E. 2009. Impact of glyphosate application on microbial biomass and metabolic activity in a Vertic Argiudoll from Argentina. Eur. J. Soil Biol., 45(2): 163-167.
Gopalakrishnan, S., Srinivas, V., and Samineni, S. 2017. Nitrogen fixation, plant growth and yield enhancements by diazotrophic growth-promoting bacteria in two cultivars of chickpea (Cicer arietinum L.). Biocatal. Agric. Biotechnol., 11: 116-123.
Grover, M., Ali, S. Z., Sandhya, V., Rasul, A., and Venkateswarlu, B. 2011. Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J. Microb. Biot., 27(5): 1231-1240.
Haney, R. L., Senseman, S. A., Hons, F. M., and Zuberer, D. A. 2000. Effect of glyphosate on soil microbial activity and biomass. Weed Sci., 48(1): 89-93.
Haney, R., Senseman, S., Krutz, L., and Hons, F. 2002. Soil carbon and nitrogen mineralization as affected by atrazine and glyphosate. Biol.Fertil. Soils, 35(1): 35-40.
Herbert, R. A. 1989. Microbial growth at low temperature. Mechanism of action of food preservation procedures, 71.
Hill, C., O'Driscoll, B., and Booth, I. 1995. Acid adaptation and food poisoning microorganisms. Int. J. Food Microbiol., 28(2): 245-254.
Isermeyer, H. 1952. Eine einfache Methode zur Bestimmung der Bodenatmung und der Karbonate im Boden. Z. Pflanzenernaehr. Dueng. Bodenk., 56(1‐3): 26-38.
Ismail, B. S., Yapp, K. F., and Omar, O. 1998. Effects of metsulfuron-methyl on amylase, urease, and protease activities in two soils. Soil Res., 36(3): 449-456.
Jenkinson, D. S., and Powlson, D. S. 1976. The effects of biocidal treatments on metabolism in soil -V: a method for measuring soil biomass. Soil Biol. Biochem., 8(3): 209-213.
Kepler, R. M., Schmidt, D. J. E., Yarwood, S. A., Cavigelli, M. A., Reddy, K. N., Duke, S. O., ... and Maul, J. E. 2020. Soil microbial communities in diverse agroecosystems exposed to the herbicide glyphosate. Appl. Environ. Microbiol., 86(5): 265-278.
Kremer, R. J., and Li, J. 2003. Developing weed-suppressive soils through improved soil quality management. Soil Till. Res., 72(2): 193-202.
Kremer, R., Means, N., and Kim, S. 2005. Glyphosate affects soybean root exudation and rhizosphere micro-organisms. Int. J. Environ. An. Ch., 85(15): 1165-1174.
Kryuchkova, Y. V., Burygin, G. L., Gogoleva, N. E., Gogolev, Y. V., Chernyshova, M. P., Makarov, O. E., ... and Turkovskaya, O. V. 2014. Isolation and characterization of a glyphosate-degrading rhizosphere strain, Enterobacter cloacae K7. Microbiol. Res., 169(1): 99-105.
Kuperman, R. G., and Carreiro, M. M. 1997. Soil heavy metal concentrations, microbial biomass and enzyme activities in a contaminated grassland ecosystem. Soil Biol. Biochem., 29(2): 179-190.
Kuzyakov, Y., and Xu, X. 2013. Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol., 198(3): 656-669.
Lancaster, S. H., Hollister, E. B., Senseman, S. A., and Gentry, T. J. 2010. Effects of repeated glyphosate applications on soil microbial community composition and the mineralization of glyphosate. Pest Manag. Sci.: formerly Pesticide Science, 66(1); 59-64.
Lindsay, W. L. 1979. Chemical equilibria in soils. John Wiley and Sons Ltd.
Lupwayi, N. Z., Brandt, S. A., Harker, K. N., O’Donovan, J. T., Clayton, G. W., and Turkington, T. K. 2010. Contrasting soil microbial responses to fertilizers and herbicides in a canola–barley rotation. Soil Biol. Biochem., 42(11): 1997-2004.
Mandal, A., Sarkar, B., Mandal, S., Vithanage, M., Patra, A. K., and Manna, M. C. 2020. Impact of agrochemicals on soil health. In Agrochemicals Detection, Treatment and Remediation (pp. 161-187). Butterworth-Heinemann.
Mierzejewska, E., Baran, A., Tankiewicz, M., and Urbaniak, M. 2019. Removal and Ecotoxicity of 2, 4-D and MCPA in Microbial Cultures Enriched with Structurally-Similar Plant Secondary Metabolites. Water, 11(7): 1451.
Myers, J. P., Antoniou, M. N., Blumberg, B., Carroll, L., Colborn, T., Everett, L. G., and Vandenberg, L. N. 2016. Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement. Environ. Health, 15(1): 19.
Nannipieri, P., Grego, S., Ceccanti, B., Bollag, J. M., and Stotzky, G. 1990. Ecological significance of the biological activity in soil. Soil Biochem., 6.
Nannipieri, P., Ascher, J., Ceccherini, M. T., Landi, L., Pietramellara, G., and Renella, G. 2017. Microbial diversity and soil functions. Eur. J. Soil Sci., 68(1): 12-26.
Nguyen, D. B., Rose, M. T., Rose, T. J., Morris, S. G., and Van Zwieten, L. 2016. Impact of glyphosate on soil microbial biomass and respiration: A meta-analysis. Soil Biol. Biochem., 92: 50-57.
Nguyen, T. T. N., Wallace, H. M., Xu, C. Y., Zwieten, L. V., Weng, Z. H., Xu, Z., ... and Bai, S. H. 2018. The effects of short term, long term and reapplication of biochar on soil bacteria. Sci. Total Environ. 636: 142-151.
Pertile, M., Antunes, J. E. L., Araujo, F. F., Mendes, L. W., Van den Brink, P. J., and Araujo, A. S. F. 2020. Responses of soil microbial biomass and enzyme activity to herbicides imazethapyr and flumioxazin. Sci. Rep., 10(1); 1-9.
Przemieniecki, S. W., Kurowski, T. P., Damszel, M. M., Karwowska, A., and Adamiak, E. 2018. Effect of Roundup 360 SL on survival of Pseudomonas sp. SP0113 strain and effective control of phytopathogens. Agr. Sci. Tech., 19: 1417-1427
Ratcliff, A. W., Busse, M. D., and Shestak, C. J. 2006. Changes in microbial community structure following herbicide (glyphosate) additions to forest soils. Appl. Soil Ecol., 34(2-3): 114-124.
Radivojević, L., Šantrić, L., and Gajić-Umiljendić, J. 2011. Rimsulfuron in soil: effects on microbiological properties under varying soil conditions. Pestic. Fitomed., 26(2): 135-140.
Rodriguez, A. M., and Jacobo, E. J. 2010. Glyphosate effects on floristic composition and species diversity in the Flooding Pampa grassland (Argentina). Agric. Ecosysand Environ., 138(3-4): 222-231.
Rojas, M. A., Van Eerd, L. L., O’Halloran, I. P., Sikkema, P. H., and Robinson, D. E. 2016. Effect of herbicide residues on fall-seeded cover crops influence soil aggregate stability and mineral N. Can. J. Plant Sci., 97(3): 411-423.
Rose, M. T., Cavagnaro, T. R., Scanlan, C. A., Rose, T. J., Vancov, T., Kimber, S., and Van Zwieten, L. 2016. Impact of herbicides on soil biology and function. In Advances in Agronomy (Vol. 136, pp. 133-220). Academic Press.
Rosenbaum, K. K., Miller, G. L., Kremer, R. J., and Bradley, K. W. 2014. Interactions between glyphosate, Fusarium infection of common waterhemp (Amaranthus rudis), and soil microbial abundance and diversity in soil collections from Missouri. Weed Sci., 62(1): 71-82.
Schloter, M., Nannipieri, P., Sørensen, S. J., and van Elsas, J. D. 2018. Microbial indicators for soil quality. Biol. Fertil. Soils, 54(1); 1-10.
Shahid, M., Ahmed, B., and Khan, M. S. 2018. Evaluation of microbiological management strategy of herbicide toxicity to greengram plants. Biocatal. Agric. Biotechnol., 14; 96-108.
Shaw, L. J., and Burns, R. G. 2006. Enzyme profiles and soil quality. Microbiological methods for assessing soil quality. Edited by J. Bloem, DW Hopkins, and A. Benedetti. CABI Publishing, Wallingford, Oxfordshire, UK.
Soil Survey Staff. 2014. Keys to Soil Taxonomy, 11th edition. USDA. Natural Resources Conservation Service, Washington DC 338.
Song, B., Zeng, G., Gong, J., Liang, J., Xu, P., Liu, Z., ... and Ye, S. 2017. Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. Environ. Int., 105: 43-55.
Tabatabai, M. A. 1982. Soil Enzymes1. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, (methods of soil an2), 903-947.
Tang, J., Zhang, J., Ren, L., Zhou, Y., Gao, J., Luo, L., ... and Chen, A. 2019. Diagnosis of soil contamination using microbiological indices: A review on heavy metal pollution. J. Environ. Manage., 242: 121-130.
Tanney, J. B., and Hutchison, L. J. 2010. The effects of glyphosate on the in vitro linear growth of selected microfungi from a boreal forest soil. Can. J Microbiol., 56(2); 138-144.
Thalmann, A. 1966. The determination of the dehydrogenase activity in soil by means of TTC (triphenyltetrazolium). Soil Biol., 6: 46-49.
Thiele-Bruhn, S., and Beck, I. C. 2005. Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. Chemosphere, 59(4); 457-465.
Van Hoesel, W., Tiefenbacher, A., König, N., Dorn, V. M., Hagenguth, J. F., Prah, U., ... and Lagerlöf, J. (2017). Single and combined effects of pesticide seed dressings and herbicides on earthworms, soil microorganisms, and litter decomposition. Front. plant sci., 8, 215.
Wang, Q. K., Wang, S. L., and Liu, Y. X. 2008. Responses to N and P fertilization in a young Eucalyptus dunnii plantation: microbial properties, enzyme activities and dissolved organic matter. Appl. Soil Ecol., 40(3); 484-490.
Wardle, D. A., and Parkinson, D. 1990a. Effects of three herbicides on soil microbial biomass and activity. Plant Soil, 122(1); 21-28.
Wardle, D. A., and Parkinson, D. 1990b. Influence of the herbicide glyphosate on soil microbial community structure. Plant Soil, 122(1): 29-37.
Wardle, D. A., and Parkinson, D. 1991. Relative importance of the effect of 2, 4-D, glyphosate, and environmental variables on the soil microbial biomass. Plant Soil, 134(2): 209-219.
Xue, L., Ren, H., Brodribb, T. J., Wang, J., Yao, X., and Li, S. 2020. Long term effects of management practice intensification on soil microbial community structure and co-occurrence network in a non-timber plantation. Forest Ecol. Manag. 459; 117805.
Yang, J., Yang, F., Yang, Y., Xing, G., Deng, C., Shen, Y., ... and Yuan, H. 2016. A proposal of “core enzyme” bioindicator in long-term Pb-Zn ore pollution areas based on topsoil property analysis. Environ. Pollut., 213; 760-769.
Zabaloy, M. C., and Gómez, M. A. 2008. Microbial Respiration in Soils of the Argentine Pampas after Metsulfuron Methyl, 2, 4‐D, and Glyphosate Treatments. Commun. Soil Sci. Plant Analysis, 39(3-4): 370-385.
Zabaloy, M. C., Garland, J. L., and Gómez, M. A. 2008. An integrated approach to evaluate the impacts of the herbicides glyphosate, 2, 4-D and metsulfuron-methyl on soil microbial communities in the Pampas region, Argentina. Appl. Soil Ecol., 40(1): 1-12.
Zabaloy, M. C., Gómez, E., Garland, J. L., and Gómez, M. A. 2012. Assessment of microbial community function and structure in soil microcosms exposed to glyphosate. Appl. Soil Ecol, 61: 333-339.
Zain, N. M. M., Mohamad, R. B., Sijam, K., Morshed, M. M., and Awang, Y. 2013. Effects of selected herbicides on soil microbial populations in oil palm plantation of Malaysia: a microcosm experiment. Afr. J. Microbiol. Res., 7(5): 367-374.
Zhang, C., Liu, X., Dong, F., Xu, J., Zheng, Y., and Li, J. 2010. Soil microbial communities’ response to herbicide 2, 4-dichlorophenoxyacetic acid butyl ester. Eur. J. Soil Biol., 46(2); 175-180.