1. Acerete, L., Balasch, J., Espinosa, E.A. and Tort, L. 2004. Physiological responses in Eurasian perch (preca fluviatilis, L.) subjected to stress by transport and handling. Aquacul. 237: 167-178.
2. Abdel‐Tawwab, M. and Wafeek, M. 2010. Response of Nile tilapia, Oreochromis niloticus (L.) to environmental cadmium toxicity during organic selenium supplementation. J. World Aquacul. Soci. 41: 106-114.
3. Abdel-Tawwab, M., Mousa, M.A. and Abbass, F.E. 2007. Growth performance and physiological response of African catfish, Clarias gariepinus (B.) fed organic selenium prior to the exposure to environmental copper toxicity. Aquacul. 272: 335-345.
4. Albrecht, M.A., Evan, C.W. and Raston, C.L. 2006. Green chemistry and the health implications of nanoparticles. Green Chem. 8: 417-32.
5. Al-Dawairi, A., Brown, A.R., Pabona, J.M.P., Van, T.H., Hamdan, H., Mercado, C.P., Quick, C.M., Wight, P.A., Simmen, R.C.M. and Simmen, F.A. 2014. Enhanced Gastrointestinal Expression of Cytosolic Malic Enzyme (ME1) Induces Intestinal and Liver Lipogenic Gene Expression and Intestinal Cell Proliferation in Mice. PLoS ONE 9(11): e113058.
6. Annino, J.S. and Giese, R.W. 1976. Clinical chemistry: principles and procedures. Little, Brown, Boston.pp. 76-82.
7. Arshad, U., Takami, G.A., Sadeghi, M., Bai, S., Pourali, H.R. and Lee, S. 2011. Influence of dietary l‐selenomethionine exposure on growth and survival of juvenile Huso huso. J. of Appl. Ichthyo. 27:761-765.
8. Ashouri, S., Keyvan shokooh, S., Salati, A.P., Johari, S.A. and Pasha-Zanoosi, H. 2015. Effects of different levels of dietary selenium nanoparticles on growth performance, muscle composition, blood biochemical profiles and antioxidant status of common carp (Cyprinus carpio). Aquacul. 446:25–29.
9. Bitiren M, Karakılçık AZ, Zerin M, Aksoy N, Musa D (2004) Effects of selenium on histopathological and enzymatic changes in experimental liver injury of rats. Experi and Toxicol pathol 56:59-64.
10. Bunglavan, S.J., Garg, A.K., Dass, R.S. and Shrivastava, S. 2014. Effect of supplementation of different levels of selenium as nanoparticles/sodium selenite on blood biochemical profile and humoral immunity in male Wistar rats. Veter. World, 7:1075-1081.
11. Cotter, P.A., Craig, S.R. and McLean, E. 2008. Hyperaccumulation of selenium in hybrid striped bass: a functional food for aquaculture?. Aquacul. Nutri. 14:215-222.
12. Deng, D.F., Hung, S.S.O. and Teh, S.J. 2007. Selenium depuration: Residual effects of dietary selenium on Sacramento splittail (Pogonichthys macrolepidotus). Scien. of the Total Enviro. 377:224-232.
13. Eisler, R. 2000. Selenium Handbook of Chemical Risk Assessment. In: Health Hazards to Humans, Plants, and Animals, Lewis Publishers, CRC Press, Boca Raton: pp, 1649-1705.
14. Elia, A.C., Prearo, M., Pacini, N., Dörr, A.J.M. and Abete, M.C. 2011. Effects of selenium diets on growth, accumulation and antioxidant response in juvenile carp. Ecotoxicol. Environ. Saf. 74:166–173.
15. Haagensen, L., Jensen, D.H. and Gesser, H. 2008. Dependence of myosin-ATPase on structure bound creatine kinase in cardiac my fibrils from rainbow trout and freshwater turtle. Comp. Biochem. and Physiol. Part A, 150:404-409.
16. Hamilton, S.J. 2004. Review of selenium toxicity in the aquatic food chain. Scien. of the Total Enviro. 326:1-31.
17. Hamilton, S.J., Buhl, K.J., Faerber, N.L., Bullard, F.A. and Wiedmeyer, R.H. 1990. Toxicity of organic selenium in the diet to chinook salmon. Enviro. Toxicol. and Chem., 9:347-358.
18. Hao, X., Ling, Q. and Hong, F. 2014. Effects of dietary selenium on the pathological changes and oxidative stress in loach (paramisgurnus dabryanus). Fish Physio. and Biochem., 40:1313-1323.
19. Johnson, A.M., Rohlfs, E.M., Silverman, L.M., Burtis, C.A. and Ashwood, E.R. 1999. Tietz textbook of clinical chemistry, 3rd ed, W.B. Saunders Co, Philadelphia: pp 477-540.
20. Lin, Y.H. and Shiau, S.Y. 2005. Dietary selenium requirements of juvenile grouper. Aquacul. 250:356-363.
21. Lorentzen, M., Maage, A. and Julshamn, K. 1994. Effects of dietary selenite or selenomethionine on tissue selenium levels of Atlantic salmon (Salmo salar). Aquacul. 121:359-367.
22. Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275.
23. Moss, D.W. and Henderson, A.R. 1999. Clinical Enzymology. In: Tietz Textbook of Clinical Chemistry, 3rd ed, W.B. Saunders Co, Philadephia: pp 617-677.
24. Newman, D.J. and Price, C.P. 1999. Renal Function and Nitrogen Metabolites. In: Tietz Textbook of Clinical Chemistry, 3rd ed, W.B. Saunders Co, Philadelphia: pp 1204-1270.
25. Nguyen, H.T. 1999. Transport protein. In: The Clinical Chemistry of Laboratory Animals, Second Edition. Taylor and Francis, Philadelphia: pp 309-335.
26. Ozawa, E., Hagiwara, Y. and Yoshida, M. 1999. Creatine kinase, cell membrane and Duchenne musculardystrophy. Molecul. and Cell Biochem. 190:143-151.
27. Pelyhe, C. and Mezes, M. 2013. Myths and facts about the effects of nano selenium in farm animals–mini-review. Europ. Chem. Bull. 2:1049-1052.
28. Ramsden, S.R., Smith, T.J., Shaw, B.J. and Handy, R.D. 2009. Dietary exposure to titanium dioxide nanoparticles in rainbow trout, (Oncorhynchus mykiss): no effect on growth, but subtle biochemical disturbances in the brain. Ecotoxi. 18:939–951.
29. Thomas, L. 1998. Clinical laboratory diagonostics. 1st ed, Frankfurt: pp 65-71.
30. Yan, L. and Johnson, L.K. 2011. Selenium bioavailability from naturally produced high-selenium peas and oats in selenium-deficient rats. J. of agri. and food chem. 59:6305-6311.
31. Zhang, J.S., Gao, X.Y., Zhang, L.D. and Bao, Y.P. 2001. Biological effects of a nano red elemental selenium. Biofact. 15:27-38.
32. Zhou, X., Wang, Y., Gu, Q. and Li, W. 2009. Effects of different dietary selenium sources (selenium nanoparticle and selenomethionine) on growth performance, muscle composition and glutathione peroxidase enzyme activity of crucian carp (Carassius auratus gibelio). Aquacul. 291:78-81.
33. Zhu, Y., Chen, Y., Liu, Y., Yang, H., Liang, G. and Tian, L. 2012. Effect of dietary selenium level on growth performance, body composition and hepatic glutathione peroxidase activities of largemouth bass Micropterus salmoide. Aquacul. Res. 43:1660-1668.
34. Ziaei-Nejad, S., Salehi, L.M., Ghaednia, B., Johari, S.A. and Aberomand, A. 2015. In vitro antagonistic properties of copper nanoparticles and probiotic Bacillus subtilis against pathogenic luminescent Vibrio harveyi. AACL Biofl. 8:445-452.
35. Ziaei-nejad, S., Delavarian, R., Khaki, F. and Johari, S.A. 2018. Tissue accumulation of colloids of silver nanoparticles on gill and caudal pedancle muscle tissues in common carp (Cyprinus carpio). J. of Aquacul. Develop. 12:83-94.