1. Abbastabar B, Azizi MH, Adnani A & Abbasi S. (2015). Determining and modeling rheological characteristics of quince seed gum. Food Hydrocolloids 43:259-264.
2. Abu-Jdayil, B. (2003). Modelling the time-dependent rheological behavior of semisolid foodstuffs. Journal of Food Engineering, 57: 97-102.
3. Alpizar-Reyes, E., Román-Guerrero, A., Gallardo-Rivera, R., Varela-Guerrero, V., Cruz-Olivares, J., & Pérez-Alonso, C. (2018). Rheological properties of tamarind (Tamarindus indica L.) seed mucilage obtained by spray-drying as a novel source of hydrocolloid. International Journal of Biological Macromolecules, 107: 817-824.
4. Behrouzian, F., Razavi, S.M.A., & Karazhiyan, H. (2013). The effect of pH, salts and sugars on the rheological properties of cress seed (Lepidium sativum) gum. International Journal of Food Science and Technology, doi:10.1111/ijfs.12242.
5. Bergman, R., Afifi, A.K., & Heidgerip, P.M. (1996). Text of histology. 9th ed. Montréal: W.B. Saunders Company, 159-68.
6. Carrington, S., Odell, J., Fisher, L., Mitchell, J., & Hartley, L. (1996). Polyelectrolyte behavior of dilute xanthan solutions: Salt effects on extensional rheology. Polymer Communications, 37(13): 2871-2875.
7. Chenlo, F., Moreira, R & Silva, C. (2011). Steady-shear flow of semidilute guar gum solutions with sucrose, glucose and sodium chloride at different temperatures. Journal of Food Engineering, 107 (2): 234-240.
8. Elboutachfaiti, R., Delattre, C., Quero, A., Roulard, R., Duch ene, J., Mesnard, F., et al.
(2017). Fractionation and structural characterization of six purified rhamnogalacturonans type from flaxseed mucilage. Food Hydrocolloids, 62: 273-279.
9. Farahmand, A., Varidi, M., & Koocheki, A. (2016). Investigation of functional properties of quince seed mucilage extracted by ultrasound, Iranian Food Science and Technology Research Journal, 12 (1), 163-181.
10. Funami, T., Hiroe, M., Noda, S., Asai, I., Ikeda, S., & Nishinari, K. (2007). Influence of molecular structure imaged with atomic force microscopy on the rheological behavior of carrageenan aqueous system in the presence or absence of cations. Food Hydrocolloids:21, 617-629.
11. Funami, T., Noda, S., Nakauma, M., Ishihara, S., Takahashi, R., Al-Assaf, S., Ikeda, S., Nishinari, K., & Phillips, G.O. (2008). Molecular structures of gellan gum imaged with atomic force microscopy in relation to the rheological behavior in aqueous systems in the presence or absence of various cations. Journal of Agricultural and Food Chemistry: 56, 8609-8618.
12. Funami, T., Noda, S., Nakauma, M., Ishihara, S., Takahashi, R., Al-Assaf, S., Ikeda, S., Nishinari, K., & Phillips, G.O. (2009). Molecular structures of gellan gum imaged with atomic force microscopy (AFM) in relation to the rheological behavior in aqueous systems in the presence of sodium chloride. Food Hydrocolloids: 23, 548-554.
13. Harrison, G., Franks, G.V., Tirtaatmadja, V., & Boger, D.V. (1999). Suspensions and polymers- common links in rheology. Korea-Australia rheology journal, 11 (3): 197-218.
14. Huei Chen, R., & Yuu Chen, W. (2001). Rheological properties of the water soluble mucilage of a green laver, Monostroma nitidium. Journal of Applied Phycology. 13: 481–488.
15. Imeson, A. (2010). Food Stabilisers, Thickeners and Gelling Agents. Oxford, UK: Wiley-Blackwell
16. Jouki, M., Mortazavi, S.A., Tabatabaei Yazdi, F., & Koocheki, A. (2014). Optimization of extraction, antioxidant activity and functional properties of quince seed mucilage by RSM. International Journal of Biological Macromolecules, 66: 113-124.
17. Kar, F., & Arslan, N. (1991). Characterization of orange peel pectin and effect of sugars, Ascorbic acid, ammonium persulfate, salts on viscosity of orange peel pectin solutions Carbohydrate Polymer, 40:285–291.
18. Karazhiyan, H., Razavi, S. M. A., Phillips, G. O., Fang, Y., Al-Assaf, S., Nishinari, K., et al., (2009). Rheological properties of Lepidium sativum seed extract as a function of concentration, temperature and time. Food Hydrocolloids: 23:2062-2068.
19. Koocheki, A., & Razavi, S.M.A. (2009). Effect of Concentration and Temperature on Flow Properties of Alyssum homolocarpum Seed Gum Solutions: Assessment of Time Dependency and Thixotropy. Food Biophysics, 4: 353-364.
20. Koocheki, A., Mortazavi, S.A., Shahidi, F., Razavi, S.M.A & Taherian A.R. (2009). Journal of Food Engineering, 91 (3): 49–496.
21. Lai, L.S, Tung, J., & Lin, P.S. (2000). Solution properties of hsian-tsao (mesona procumbens hems L) leaf gum. Food Hydrocolloids; 14:287–94.
22. Legua, P., Serrano, Melgarejo, P.M., Valero, D., Martínez, J.J., Martínez, R., & Hernández, F., (2013). Quality parameters, biocompounds and antioxidant activity in fruits of nine quince (Cydonia oblonga Miller) accessions. Scientia Horticulturae. 154:61–65.
23. Lei, M., Lu, X. L., & Xiao, K. (2001). Study on influencing factors of viscosity of low concentration food gum solutions (2). Journal of Sichuan University (Engineering science editor, in Chinese with English abstract), 33(1): 78–81.
24. Lin, H.Y., & Lai, L.S. (2009). Isolation and viscometric characterization of hydrocolloids from mulberry (Morus alba L.) leaves. Food Hydrocolloids, 23 (3): 840–848.
25. Lindberg, B., Mosihuzzaman, M., Nahar, N., Abeysekera, R.M., Brown, R.G., & Willison, J.H.M. (1990). An unusual (4-O-methyl-D-glucurono)-D-xylan isolated from the mucilage of seeds of the quince tree (Cydonia oblonga), Carbohydrate Research. 207:307-310.
26. Mao, C.F & Chen, J.C. (2006). Interchain association of locust bean gum in sucrose solutions: an interpretation based on thixotropic behavior. Food Hydrocolloids, 20: 730–739.
27. Mazza, G., & Biliaderis, C.G. (1989). Functional properties of flax seed mucilage, Journal of food science, 54: 1302–1305.
28. Morris, E. R., Cutler, A. N., Ross-Murphy, S. B., Rees, D. A., & Price, J. (1981). Concentration and shear rate dependence of viscosity in random coil polysaccharide solutions. Carbohydrate Polymers, 1: 5–21.
29. Naji-Tabasi, S & Razavi, S.M.A. (2017). New studies on basil (Ocimum bacilicum L.) seed gum: Part III - Steady and dynamic shear rheology. Food Hydrocolloids, 67: 243-250.
30. Oliveira, J. D., Silva, D. A., Paula, R. C. M., Feitosa, J. P. A., & Paula, H. C. B. (2001). Composition and effect of salt on rheological and gelation properties of Enterolobium contortisilliquum gum exudate. International Journal of Biological Macromolecules, 29(1), 35-44.
31. Razavi, S.M.A & Karazhiyan, H. (2009). Flow properties and thixotropy of selected hydrocolloids: experimental and modeling studies. Food Hydrocolloid, 23: 908–912
32. Razavi, S.M.A., Cui, S.W., & Ding, H. (2016). Structural and physicochemical characteristics of a novel water-soluble gum from Lallemantia royleana seed, International Journal of Biological Macromolecule, 83: 142–151.
33. Razavi, S.M.A., Taheri, H., & Quinchia, L.A. (2011). Steady shear flow properties of wildsage (Salvia macrosiphon) seed gum as a function of concentration and temperature, Food Hydrocolloids. 25: 451–458.
34. Razmkhah, S., Razavi, S.M.A., & Mohammadifar, M.A. (2017). Dilute solution, flow behavior, thixotropy and viscoelastic characterization of cress seed (Lepidium sativum) gum fractions. Food Hydrocolloids, 63: 404-413.
35. Rezagholi, F., Hashemi,S.M.B., Gholamhosseinpour, A., Hamidabadi, M., Hesarinejad, M.A., & Tutor Ale, M. (2018). Characterizations and rheological study of the purified polysaccharide extracted from quince seeds, Journal of the science of food and agriculture, https://doi.org/10.1002/jsfa.9155.
36. Richardson, P. H., & Norton, I. T. (1998). Gelation behavior of concentrated locust bean gum solutions. Macromolecules, 31: 1575–1583.
37. Ritzoulis, C., Marini, E., Aslanidou, A., Georgiadis, N., Karayannakidis, P., Koukiotis, C., Filotheou, A., Lousinian, S., & Tzimpilis, E. (2014). Hydrocolloids from quince seed: Extraction, characterization, and study of their emulsifying/stabilizing capacity, Food Hydrocolloids, 42:178-186.
38. Salehi, F., & Kashaninejad, M. (2015). Static Rheological Study of Ocimum basilicum Seed Gum. International journal of food engineering, 11(1): 97-103.
39. Salehi, F., Kashaninejad, M., & Behshad, v. (2014). Effect of sugars and salts on rheological properties of Balangu seed (Lallemantia royleana) gum, International Journal of Biological Macromolecules, 67: 16-21.
40. Sharma, R., Joshi, V.K., & Rana, J.C., (2011). Nutritional composition and processed products of quince (Cydonia oblonga Mill.). Indian Journal of Natural Products and Resources. 2: 354–357.
41. Soukoulis, C., Lebesi, D., & Tzia, C. (2009). Enrichment of ice cream with dietary fiber: Effects on rheological properties, ice crystallization and glass transition phenomena. Food Chemistry, 115(2): 665-671.
42. Soukoulis, Ch., Gaiani, C., & Hoffmann, C. (2018). Plant seed mucilage as emerging biopolymer in food industry applications, current opinion in food science, https://doi.org/doi:10.1016/j.cofs.2018.01.004.
43. Torres, M.D., Raymundo, A. & Sousa, I. (2013). Effect of sucrose, stevia and xylitol on rheological properties of gels from blends of chestnut and rice flours. Carbohydrate Polymers, 98: 249–256.
44. Van Aken, G. A. (2006). Polysaccharides in food emulsions. In A. M. Stephen, G. O. Phillips, & P. A. Williams (Eds.), London: Taylor and Francis, Food polysaccharides and their applications (2nd ed.), 521-539.
45. Velázquez-Gutiérrez, S.K., Figueira, A.C., Rodríguez-Huezo, M.E., Román-Guerrero, A., Carrillo-Navas, H., & Pérez-Alonso,C. (2015). Sorption isotherms thermodynamic properties and glass transition temperature of mucilage extracted from chia seeds (Salvia hispanica L.), Carbohydrate Polymer, 121: 411–419.
46. Williams, P. A., & Phillips, G. O. (2000). Introduction to food hydrocolloids. In G. O. Phillips & P. A. Williams (Eds.), New York, NY: CRC Press. Handbook of hydrocolloids, 1–19.
47. Wojdyło, A., Oszmianski, J., & Bielicki, P., (2013). Polyphenolic composition, antioxidant activity, and polyphenol oxidase (PPO) activity of quince (Cydonia oblonga Miller) varieties. Journal of Agricultural Food Chemistry, 61: 2762–2772.
48. Wu, Y., Ding, W., Jia, L., & He, Q. (2015). The rheological properties of tara gum (Caesalpinia spinosa)., Food Chemistry, 168: 366-371.
49. Wyatt, N. B., Gunther, C. M., & Liberatore, M. W. (2011). Increasing viscosity in entangled polyelectrolyte solutions by the addition of salt. Polymer, 52: 2437-2444.
50. Yanbei, W., Wei, D., Lirong, J., & Qiang, H. (2015). The rheological properties of tara gum (Caesalpinia spinosa). Food Chemistry, 168: 366-371.
51. Yousefi, A.R., Eyvazloo, R., & Razavi, S.M.A. (2016). Steady shear flow behavior of sage seed gum affected by various salts and sugars: Time-independent properties, International Journal of Biological Macromolecules, 91: 1018-1024.