REFERENCE
1.Abdollahi Mandoulakani, B., Sadigh, P., Azizi, H., Piri, Y., Nasri, Sh. and Arzhangh, S. 2015. Comparative assessment of IRAP, REMAP, ISSR, and SSR markers for evaluation of genetic diversity of alfalfa (Medicago sativa L.). J. Agr. Sci. Tech., 17: 999-1010.
2. Amoozadeh, M., Darvishzadeh, R., Davar, R., Abdollahi Mandoulakani, B., Haddadi, P. and Basirnia, A. 2015. Quantitative trait loci associated with isolate specific and isolate non-specific partial resistance to Sclerotinia sclerotiorum in Sunflower. J. Agr. Sci. Tech., 17: 213-226.
3.Alvarez, A. E., van de Wiel, C. C. M., Smulders, M. J. M. and Vosman, B. 2001. Use of microsatellites to evaluate genetic diversity and species relationships in the genus Lycopersicon. Theor. Appl. Genet., 103(8): 1283-1292.
4. Areshchenkova, T. and Ganal, M. W. 1999. Long tomato microsatellites are predominantly associated with centromeric regions. Genome, 42(3): 536-544.
5. Areshchenkova, T. 2000. Isolation, characterization and mapping of microsatellites from the tomato genome and their application in molecular analysis of centromeric regions. PhD. Thesis, Univ. Martin Luther, Halle-Wittenberg, Germany.
6. Areshchenkova, T. and Ganal, M. W. 2002. Comparative analysis of polymorphism and chromosomal location of tomato microsatellite markers isolated from different sources. Theor. Appl. Genet., 104(2): 229-235.
7. Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y. and Buckler, E. S. 2007. TASSEL: software for association mapping of complex traits in diverse sample. Bioinformatics, 23(19): 2633-2635.
8. Bredemeijer, G. M. M., Cooke, R. J., Ganal, M. W., Peeters, R., Isaac, P., Noordijk, Y., Rendell, S., Jackson, J., Röder, M. S., Wendehake, K., Dijcks, M., Amelaine, M., Wickaert, V., Bertrand, L. and Vosman, B. 2002. Construction and testing of a microsatellite database containing more than 500 tomato varieties. Theor. Appl. Genet., 105(6-7): 1019-1026.
9. Carelli, B. P., Gerald, L. T. S., Grazziotin, F. G. and Echeverrigaray, S. 2006. Genetic diversity among Brazilian cultivars and landraces of tomato Lycopersicon esculentum Mill. revealed by RAPD markers. Genet. Resour. Crop. Evol., 53(2): 395-400.
10. Cho, G. T., Lee, J., Moon, J. K., Yoon, M. S., Baek, H. J., Kang, J. H., Kim, T. S. and Paek, N. C. 2008. Genetic diversity and population structure of Korean soybean landrace [Glycine max (L.) Merr.]. J. Crop Sci. Biotech., 11(2): 83-90.
11. Corrado, G., Caramante, M., Piffanelli, P. and Rao, R. 2014. Genetic diversity in Italian tomato landraces: Implications for the development of a core collection. Sci. Hortic., 168: 138-144.
12. Dhaliwal, M. S., Singh, M., Singh, K. and Cheema, D. S., 2011. Genetic diversity analysis and DNA fingerinting on elite genetic stock of tomato using SSR markers. Indian J. Genet., 71(4): 341-348.
13. Earl, D. A. and vonHoldt, B. M. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour., 4(2): 359-361.
14. Ellis, J. R. and Burke, J. M. 2007. EST-SSRs as a resource for population genetic analyses. Heredity, 99(2): 125-132.
15. Emanuelli, F., Lorenzi, S., Grzeskowiak, L., Catalano, V., Stefanini, M., Troggio, M., Myles, S., Zapater, J. M. M., Zyprian, E., Moreira, F. M. and Grando, M. S. 2013. Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biol., 13: 39.
16. Evanno, G., Regnaut, S. and Goudet, J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol., 14(8): 2611-2620.
17. Foolad, M. R. 2007. Genome mapping and molecular breeding of tomato. Int. J. Plant Genomics, 10: 1-52.
18. Fusari, C. M., Lia, V. V., Hopp, H. E., Heinz, R. A. and Paniego, N. B. 2008. Identification of single nucleotide polymorphisms and analysis of Linkage Disequilibrium in sunflower elite inbred lines using the candidate gene approach. BMC Plant Biol., 8: 7.
19. Garcia-Martinez, S., Andreani, L., Garcia-Gusano, M., Geuna, F. and Ruiz, J. J. 2006. Evaluation of amplified fragment length polymorphism and simple sequence repeats for tomato germplasm fingerprinting: utility for grouping closely related traditional cultivars. Genome, 49(6): 648-656.
20. Hall, D., Tegstrom, C. and Ingvarsson, P. K. 2010. Using association mapping to dissect the genetic basis of complex traits in plants. Brief. Funct. Genomics, 9(2): 157-165.
21. He, C., Poysa, V. and Yu, K. 2003. Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivars. Theor. Appl. Genet., 106(2): 363-373.
22. Henareh, M., Dursun, A. and Abdollahi Mandoulakani, B. 2015. Genetic diversity in tomato landraces collected from Turkey and Iran revealed by morphological characters. Acta Sci. Pol. Hortoru., 14(2): 87-96.
23. Henareh, M., Dursun, A. and Abdollahi Mandoulakani, B. 2016. The Correlation between traits and path analysis of yield in tomato. Journal of Applied Crop Breeding (In Persian), 3(2): 163-175.
24. Kulus, D., 2018a. Genetic resources and selected conservation methods of tomato. J. Appl. Bot. Food Qual., 91: 135-144.
25. Kulus, D., 2018b. Molecular breeding of tomato - a mini review of of latest achievements. Nauka Przyr. Technol., 12(1): 65-72.
26. Kulus, D., 2019. Managing plant genetic resources using low and ultra-low temperature storage: A case study of tomato. Biodivers. Conserv., 28(5): 1003-1027.
27. Lecomte, L., Saliba-Colombani, V., Gautier, A., Gomez-Jimenez, M. C., Duffe, P., Buret, M. and Causse, M. 2004. Fine mapping of QTLs of chromosome 2 affecting the fruit architecture and composition of tomato. Mol. Breed., 13(1): 1-14.
28. Mazzucato, A., Papa, R., Bitocchi, E., Mosconi, P., Nanni, L., Negri, V., Picarella, M. E., Siligato, F., Soressi, G. P., Tiranti, B. and Veronesi, F. 2008. Genetic diversity, structure and marker-trait associations in a collection of Italian tomato (Solanum lycopersicum L.) landraces. Theor. Appl. Genet., 116(6): 657-669.
29. Mazzucato, A., Ficcadenti, N., Caioni, M., Mosconi, P., Piccinini, E., Sanampudi, V. R. R., Sestili, S. and Ferrari, V. 2010. Genetic diversity and distinctiveness in tomato (Solanum lycopersicum L.) landraces: The Italian case study of ‘A pera Abruzzese’. Sci. Hortic., 125(1): 55-62.
30. Nesbitt, T. C. and Tanksley, S. D. 2002. Comparative Sequencing in the genus Lycopersicon: Implications for the evolution of fruit size in the domestication of cultivated tomatoes. Genetics, 162(1): 365-379.
31. Peakall, R. and Smouse, P. E. 2012. GenAlEx 6.5: genetic analysis in excel, population genetic software for teaching and research-an update. Bioinformatics, 28(19): 2537-2539.
32. Pritchard, J. K., Stephens, M. and Donnelly, P .2000. Inference of population structure using multilocus genotype data. Genetics, 155(2): 945-959.
33. Ranc, N., Munos, S., Santoni, S. and Causse, M. 2008. A clarified position for Solanum lycopersicum var. cerasiforme in the evolutionary history of tomatoes (solanaceae). BMC Plant Biol., 8: 130.
34. Ranc, N., Munos, S., Xu, J., Le Paslier, M. C., Chauveau, A., Bounon, R., Rolland, S., Bouchet, J. P., Brunel, D. and Causse, M. 2012. Genome-wide association mapping in tomato (Solanum lycopersicum) is possible using genome admixture of solanum lycopersicum var. cerasiforme. G3: Genes Genomes Genetics, 2(8): 853-864.
35. Robbins, M. D., Sim, S. C., Yang, W., Deynze, A. V., Knaap, E., Joobeur, T. and Francis, D. M. 2011. Mapping and linkage disequilibrium analysis with a genome-wide collection of SNPs that detect polymorphism in cultivated tomato. J. Exp. Bot., 62(6): 1831-1845.
36. Ruggieri, V., Francese, G., Sacco, A., D’Alessandro, A., Rigano, M. M., Parisi, M., Milone, M., Cardi, T., Mennella, G. and Barone, A. 2014. An association mapping approach to identify favourable alleles for tomato fruit quality breeding. BMC Plant Biol., 14: 337.
37. Saghai-Maroof, M. A., Soliman, K. M., Jorgensen, R. A. and Allard, R. W. 1984. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. USA, 81(24): 8014-8018.
38. Šidàk, Z. 1967. Rectangular confidence region for the means of multivariate normal distributions. J. Am. Stat. Assoc., 62(318): 626-633.
39. Sim, S. C., Robbins, M. D., Chilcott, C., Zhu, T. and Francis, D. M. 2009. Oligonucleotide array discovery of polymorphisms in cultivated tomato (Solanum lycopersicum L.) reveals patterns of SNP variation associated with breeding. BMC Genomics, 10: 466.
40. Shirasawa, K., Fukuoka, H., Matsunaga, H., Kobayashi, Y., Kobayashi, I., Hirakawa, H., Isobe, S. and Tabata, S. 2013. Genome-wide association studies using single nucleotide polymorphism markers developed by re-sequencing of the genomes of cultivated tomato. DNA Res., 20(6): 593-603.
41. Tabbasam, N., Zafar, Y. and Rahman, M. 2014. Pros and cons of using genomic SSRs and EST-SSRs for resolving phylogeny of the genus Gossypium. Plant Syst. Evol., 300(3): 559-575.
42. Tam, S. M., Mhiri, C., Vogelaar, A., Kerkveld, M., Pearce S. R. and Grandbastien, M. A. 2005. Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theor. Appl. Genet., 110(5): 819-831.
43. Tamura, K., Dudley, J., Nei, M. and Kumar, S. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol., 24(8): 1596-1599.
44. Todorovska, E., Ivanova, A., Ganeva, D., Pevicharova, G., Molle, E., Bojinov, B., Radkova, M. and Danailov, Z. 2014. Assessment of genetic variation in Bulgarian tomato (Solanum lycopersicum L.) genotypes, using fluorescent SSR genotyping platform. Biotechnol. Biotechnol. Equip., 28(1): 68-76.
45.The Tomato Genome Consortium. 2012. The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485: 635-641.
46. Tranchida-Lombardo, V., Cigliano, R.A., Anzar, I., Landi, S., Palombieri, S., Colantuono, C., Bostan, H., Termolino, P., Aversano, R., Batelli, G., Cammareri, M., Carputo, D., Chiusano, M.L., Conicella, C., Consiglio, F., D’Agostino, N., De Palma, M., Di Matteo, A., Grandillo, S., Sanseverino, W., Tucci, M. and Grillo, S. 2018.Whole-genome re-sequencing of two Italian
tomato landraces reveals sequence variations in genes associated with stress tolerance, fruit
quality and long shelf-life traits. DNA Res., 25(2): 149-160.
47. Williams, C. E. and Clair, D. A. 1993. Phenetic relationships and levels of variability detected by restriction fragment length polymorphism and random amplified polymorphic DNA analysis of cultivated and wild accessions of Lycopersicon esculentum. Genome, 36(3): 619-630.
48. Xu, J., Ranc, N., Munos, S., Rolland, S., Bouchet, J. P., Desplat, N., Le Paslier, M. C., Liang, Y., Brunel, D. and Causse, M. 2013. Phenotypic diversity and association mapping for fruit quality traits in cultivated tomato and related species. Theor. Appl. Genet., 126(3): 567-581.
49. Zeng, S. H., Xiao, G., Guo, J., Fei, Z. J., Xu, Y. Q., Roe, B. A. and Wang, Y. 2010. Development of a EST dataset and characterization of EST-SSRs in a traditional Chinese medicinal plant, Epimedium sagittatum (Sieb. Et Zucc.) Maxim. BMC Genomics, 11: 94.