Seed Priming with 24-Epibrassinolide Alters Growth and Phenylpropanoid Pathway in Flax in Response to Water Deficit

Document Type : Original Research

Authors
Department of Biology, Faculty of Sciences, Urmia University, Urmia, Islamic Republic of Iran.
Abstract
The aim of the present study was to determine the effects of seed priming with 24-Epibrassinolide (EBR) (10-8 M) on growth, biochemical, and molecular characteristics of Linum usitatissimum L. seedlings under Polyethylene Glycol (PEG) induced drought stress conditions. Imposition of flax seedlings to 6, 12, and 18% PEG declined germination rate, shoot length, root length, fresh and dry weights, and significantly increased phenolic content and PAL (Phenylalanine Ammonia Lyase) enzymatic activity while lowering flavonoid content. Application of EBR significantly increased the germination rate, shoot and root lengths, dry weight, fresh weight, and anthocyanin content whereas reduced phenolic content. At the molecular level, CHS (Chalcone Synthase) and PAL (Phenylalanine Ammonia Lyase) transcripts were upregulated under drought stress and even more expressed by application of EBR. In conclusion, EBR pre-sowing seed priming considerably alleviated damages caused by drought stress and improved growth parameters in Linum usitatissimum L. seedlings.

Keywords

Subjects


1. Abbas, S., Latif, H.H. and Elsherbiny, E.A. 2013. Effect of 24-Epibrassinolide on the Physiological and Genetic Changes on Two Varieties of Pepper under Salt Stress Conditions. Pak. J. Bot., 45: 1273–1284.
2. Aghaee, P. and Rahmani, F. 2019. Biochemical and Molecular Responses of Flax to 24-Epibrassinosteroide Seed Priming under Drought Stress. J Plant Interact., 14(1): 242-253.
3. Ahmad, S., Ahmad, R., Ashraf, M.Y., Ashraf, M. and Waraich, E.A. 2009. Sunflower (Helianthus annuus L.) Response to Drought Stress at Germination and Seedling Growth Stages. Pak. J. Bot., 41: 647–654.
4. Anwar, A., Liu, Y., Dong, R., Bai, L., Yu, X. and Li, Y. 2018. The Physiological and Molecular Mechanism of Brassinosteroid in Response to Stress: A Review. Biol Res., 51: 46.
5. Asrar, A.W. and Elhindi, K.M. 2011. Alleviation of Drought Stress of Marigold (Tagetes erecta) Plants by Using Arbuscular Mycorrhizal Fungi. Saudi J. Biol. sci., 18: 93–98.
6. Ayub, R.A., Reis, L., Lopes, P.Z. and Bosetto, L. 2018. Ethylene and Brassinosteroid Effect on Strawberry Ripening after Field Spray. Rev. Bras. Frutic., 40(3): e-544.
7. Bajguz, A. 2007. Metabolism of Brassinosteroids in Plants. Plant Physiol. Biochem., 45: 95-107.
8. Braidot, E., Zancani, M., Petrussa, E., Peresson, C. and Bertolini, A. 2008. Transport and Accumulation of Flavonoids in Grapevine (Vitis vinifera L.). Plant Signal. Behav., 3: 626–632.
9. Caliskan, O., Radusiene, J., Temizel, K. E., Staunis, Z., Cirak, C., Kurt, D. and Odabas, M. S. 2017. The Effects of Salt and Drought Stress on Phenolic Accumulation in Greenhouse-grown Hypericum pruinatum. Ital J Agron., 12(3).
10. Cass, C.L., Peraldi, A., Dowd, P.F., Mottiar, Y., Santoro, N., Karlen, S.D., Bukhman, Y.V., Foster, C.E., Thrower, N., Bruno, L.C., Moskvin, O.V., Johnson, E.T., Willhoit, M.E., Phutane, M., Ralph, J., Mansfield, S.D., Nicholson, P. and Sedbrook J.C. 2015. Effects of Phenylalanine Ammonia Lyase (PAL) Knockdown on Cell Wall Composition, Biomass Digestibility, and Biotic and Abiotic Stress Responses in Brachypodium. J. Exp. Bot., 66(14): 4317–4335. 11. Cetinkaya, H., Kulak, M., Karaman, M., Karaman, H.S. and Kocer, F. 2017. Flavonoids from Biosynthesis to Human Health: Flavonoid Accumulation Behavior in Response to the Abiotic Stress: Can a Uniform Mechanism Be Illustrated for All Plants?
12. Chaiwanon, J. and Wang, Z.Y. 2015. Spatiotemporal Brassinosteroid Signaling and Antagonism with Auxin Pattern Stem Cell Dynamics in Arabidopsis Roots. Curr Biol., 25: 1031–1042.
13. Chen, T.H. and Murata, N. 2002. Enhancement of Tolerance of Abiotic Stress by Metabolic Engineering of Betaines and Other Compatible Solutes. Curr. Opin. Plant Bio., 5: 250–257.
14. Dao, T.TH., Linthorost, H. J. and Verpoorte, R. 2011. Chalcone Synthase and Its Functions in Plant Resistance. Phytochem. Rev., 10: 397-412.
15. Derevyanchuk, M., Litvinovskaya, R., Khripach, V., Martinec, J. and Kravets, V. 2015. Effect of 24-Epibrassinolide on Arabidopsis thaliana Alternative Respiratory Pathway under Salt Stress. Acta physiol. plant., 37: 215.
16. Farooq, M., Basra, S.M.A., Wahid, A. and Rehman, H. 2009. Exogenously Applied Nitric Oxide Enhances the Drought Tolerance in Fine Grain Aromatic Rice (Oryza sativa L.). J. Agron. Crop Sci., 195: 254–61.
17. Fayez, K.A. and Bazaid, S.A. 2014. Improving Drought and Salinity Tolerance in Barley by Application of Salicylic Acid and Potassium Nitrate. J. Saudi Soc. Agric. Sci., 13: 45–55.
18. Fitzpatrick, K. 2007. Innovation in Western Canadian Functional Food. Cereal Foods World., 52: 289-290.
19. Gambino, S., Perrone, I. and Gribauto, I. 2008. A Rapid and Effective Method for RNA Extraction from Different Tissues of Grapevine and other Woody Plants. Phytochem. Anal., 19: 520-525. 20. González-García, M.P., Vilarrasa-Blasi, J., Zhiponova, M., Divol, F., Mora-García, S., Russinova, E. and Caño-Delgado, A. I. 2011. Brassinosteroids Control Meristem Size by Promoting Cell Cycle Progression in Arabidopsis Roots. Development., 138: 849-859.
21. Grotewold, E. 2006. The Genetics and Biochemistry of Floral Pigments. Annual Review of Plant Biol., 57: 761–780.
22. Hock, E., Azrina, A., Sou, T.T. and See, M.L. 2017. Anthocyanidins and Anthocyanins: Colored Pigments as Food, Pharmaceutical Ingredients, and the Potential Health Benefits. Food. Nutr. Res., 61(1): 1361779.
23. Huis, R., Hawkins, S. and Neutelings, G. 2010. Selection of Reference Genes for Quantitative Gene Expression Normalization in Flax (Linum usitatissimum L.). BMC Plant. Biol., 10: 71.
24. Hura, T., Grzesiak, S., Hura, K., Thiemt, E. and Tokarz, K. 2007. Wedzony M. Physiological and Biochemical Tools Useful in Drought-Tolerance Detection in Genotypes of Winter Triticale: Accumulation of Ferulic acid Correlates with Drought Tolerance. Ann. Bot., 100: 767–775.
25. Jiao, Y., Jiang, Y., Zhai, W. and Yang, Z. 2012. Studies on Antioxidant Capacity of Anthocyanin Extract from Purple Sweet Potato (Ipomoea batatas L.). Afr. J. Biotechnol., 11: 7046–7054.
26. Jiroutova, P., Oklestkova, J. and Strnad, M. 2018. Crosstalk between Brassinosteroids and Ethylene during Plant Growth and under Abiotic Stress Conditions. Int. J. Mol. Sci., 19: 3283.
27. Kovinich, N., Kayanja, G., Chanoca, A., Otegui, M.S. and Grotewold, E. 2015. Abiotic Stresses Induce Different Localizations of Anthocyanins in Arabidopsis. Plant Signal. Behav., 10(7).
28. Krishnan, A. and Pereira, A. 2008. Integrative Approaches for Mining Transcriptional Regulatory Programs in Arabidopsis. Brief. Funct. Genomic. Proteomic., 7: 264–274.
29. Ksouri, R., Megdiche, W., Debez, A., Falleh, H., Grignon, C. and Abdelly, C. 2007. Salinity Effects on Polyphenol Content and Antioxidant Activities in Leaves of the Halophyte Cakile maritima. Plant Physiol. Biochem., 45: 244–249.
30. Kulbat, K. 2016. The Role of Phenolic Compounds in Plant Resistance. Biotechnol Food Sci., 80(2): 97-108.
31. Lachman, J., Dudjak, J., Miholová, D., Kolihová, D. and Pivec, V. 2005. Effect of Cadmium on Flavonoid Content in Young Barley (Hordeum sativum L.) Plants. Plant Soil Environ., 51(11): 513–516.
32. Li, X., Zhang, L., Ahammed, G.J., Li, Z.X., Wei, J.P., Shen, C., Yan, P., Zhang, L.P. and Han, W.Y. 2017. Nitric Oxide Mediates Brassinosteroid-Induced Flavonoid Biosynthesis in Camellia sinensis L. J. plant physiol., 214: 145-151.
33. Liu, Y., Tikunov, Y., Schouten, R.E., Marcelis, L.F.M., Visser, R.G.F. and Bovy, A. 2018. Anthocyanin Biosynthesis and Degradation Mechanisms in Solanaceous Vegetables: A Review. Front. Chem., 6: 52.
34. Millam, S., Bohus, O. and Anna, P. 2005. Plant Cell and Biotechnology Studies in Linum usitatissimum L. A review. Plant Cell. Tissue. Organ Cult., 82: 93-103.
35. Niu, J., Zhang, G., Zhang, W., Goltsev, V., Sun, S., Wang, J., Li, P. and Ma, F. 2017. Anthocyanin Concentration Depends on the Counterbalance Between its Synthesis and Degradation in Plum Fruit at High Temperature. Sci Rep., 7: 7684.
36. Ozdemir, F., Bor, M., Demiral, T. and Turkan, I. 2004. Effect of 24-Epibrassinolide on Seed Germination, Seedling Growth, Lipid Peroxidation, Proline Content and Antioxidant System of Rice (Oryza sativa L.) under Salinity Stress. Plant Growth Regul., 41: 1-9. 37. Phimchan, P., Chanthai, S., Bosland, P. and Techawongstien, W.S. 2014. Enzymatic Changes in Phenylalanine Ammonia-Lyase, Cinnamic-4-hydroxylase, Capsaicin Synthase, and Peroxidase Activities in Capsicum under Drought Stress. J. Agric. Food Chem., 62: 7057–7062.
38. Pourcel, L., Routaboul, J.M. and Cheynier, V. 2007. Flavonoid Oxidation in Plants: from Biochemical Properties to Physiological Functions. Trends Plant Sci., 12(1): 29-36.
39. Promyou, S., Ketsa, S. and Van-Doorn, W.G. 2007. Effect of Surface Coating on Ripening and Early Peel Spotting in ‘Sucrier’ banana (Musa acuminata). New Zeal. J. Crop Hort., 35: 259-265. However, seed pretreatment with EBR led to a further increase in PAL gene expression.
40. Quettier, D.C., Gressier, B., Vasseur, J., Dine, T., Brunet, C., Luyckx, M.C., Cayin, J.C., Bailleul, F. and Trotin, F. 2000. Phenolic Compounds and Antioxidant Activities of Buck Wheat (Fagopyrum esculentum Moench) Hulls and Flour. J. Ethnopharmacol., 72: 35-42.
41. Rattan, A., Kapoor, N. and Bhardwaj, R. 2012. Role of Brassinosteroids in Osmolytes Accumulation under Salinity Stress in Zea mays Plants. Int J Sci Res., 3: 1822-7.
42. Samanta, A., Das, G. and Das, S.K. 2011. Roles of Flavonoids in Plants. Int J Pharm Sci Tech., 6(1): 12-35.
43. Sanchez, I.J.F. 2008. Polyketide Synthase in Cannabis sativa L. PhD Thesis, Leiden University, Leiden, The Netherlands.
44. Shao, H.B., Chu, L.Y., Abdul-Jaleel, C. and Zhao, C.X. 2008. Water-Deficit Stress-Induced Anatomical Changes in Higher Plants. C. R. Biol., 331: 215-225.
45.Sharma, A., Kumar, V., Thukral, A.K. and Bhardwaj, R. 2016a. Epibrassinolide-Imidacloprid Interaction Enhances non-Enzymatic Antioxidants in Brassica juncea L. Indian J. Plant Physio., 21 (1), 70-75.
46. Sharma, A., Thakur, S., Kumar, V., Kanwar, M.K., Kesavan, A.K., Thukral, A.K., Bhardwaj, R., Alam, P. and Ahmad, P. 2016b. Pre-Sowing Seed Treatment with 24-Epibrassinolide Ameliorates Pesticide Stress in Brassica juncea L. Through the Modulation of Stress Markers. Front. Plant Sci., 7: 1569.
47. Sharma, A., Thakur, S., Kumar, V., Kesavan, A.K., Thukral, A.K. and Bhardwaj, R. 2017. 24-Epibrassinolide Stimulates Imidacloprid Detoxification by Modulating the Gene Expression of Brassica juncea L. BMC Plant Biol., 17:56.
48. Shitole, S.M. and Dhumal, K.N. 2012. Effect of Water Stress by Polyethylene Glycol 6000 and Sodium Chloride on Seed Germination and Seedling Growth of Cassia angustifolia. J. Pharm. Sci. Res., 3: 528-531.
49. Smith, H.V. and Jimmerson, j. 2005. Briefing. Agricultural Marketing Policy Center, Montana State University, MO, USA.
50. Sperdouli, I. and Moustakas, M. 2012. Interaction of Proline, Sugars, and Anthocyanins During Photosynthetic Acclimation of Arabidopsis thaliana to Drought Stress. J. Plant Physiol., 169: 577–585.
51. Statistics Canada. 2006. Production Data of Field and Specialty Crops. Accessed: February 17, 2007.
52. Steber, C. M. and McCourt, P. 2001. A Role for Brassinosteroids in Germination in Arabidopsis. Plant Physiol., 125: 763-769.
53. Tani, E., Chronopoulou, E.G., Labrou, N.E., Sarri, E., Goufa, M., Vaharidi, X., Tornesaki, A., Psychogiou, M., Bebeli, P.J. and Abraham, E.M. 2019. Growth, Physiological, Biochemical, and Transcriptional Responses to Drought Stress in Seedlings of Medicago sativa L., Medicago arborea L. and Their Hybrid (Alborea). Agron.J., 9: 38.
54. Tanveer, M., Shahzad, B., Sharma, A., Biju, S. and Bhardwaj, R. 2018. 24-Epibrassinolide; An Active Brassinolide and Its Role in Salt Stress Tolerance in Plants: A review. Plant Physiol Biochem., 130: 69-79.
55. Tanveer, M., Shahzad, B., Sharma, A. and Khan, E.A. 2019. 24-Epibrassinolide Application in Plants: An Implication for Improving Drought Stress Tolerance in Plants. Plant Physiol Biochem., 135:295-303.
56. Vannozzi, A., Dry, I.B., Fasoli, M., Zenoni, S. and Lucchin, M. 2012. Genomewide Analysis of the Grapevine Stilbene Synthase Multigenic Family: Genomic Organization and Expression Profiles upon Biotic and Abiotic Stresses. BMC Plant Biol., 12: 130.
57. Versari, A., Parpinello, G.P., Tornielli, G.B., Ferrarini, R. and Giulivo, C. 2001. Stilbene Compounds and Stilbene Synthase Expression During Ripening, Wilting, and UV Treatment in Grape cv. Corvina. J. Agric. Food Chem., 49: 5531–5536.
58. Weidner, S., Karolak, M., Karamac, M., Kosin´ska, A. and Amarowicz, R. 2009. Phenolic Compounds and Properties of Antioxidants in Grapevine Roots (Vitis vinifera) under Drought Stress Followed by Regeneration. Acta Soc. Bot. Pol., 78: 97-103.
59. Winkel-Shirley, B. 2001. Flavonoid Biosynthesis, A Colorful Model for Genetics, Biochemistry, Cell Biology, and Biotechnology. J. Plant Physiol., 126: 485–93. 60. Yuan, Y., Liu, Y., Wu, C., Chen, S. and Wang, Z. 2012. Water Deficit Affected Flavonoid Accumulation by Regulating Hormone Metabolism in Scutellaria baicalensis Georgi Roots. PLOS One., 7(10).
61. Zokaee-Khosroshahi, M., Esna-Ashari, M., Ershadi, A. and Imani, A. 2014. Morphological Changes in Response to Drought Stress in Cultivated and Wild Almond Species. J. Sci. Technol., 1(1): 79-92.