Estimation and Prediction of Metabolizable Energy Contents of Wheat Bran for Poultry

Document Type : Original Research

Authors
Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Islamic Republic of Iran.
Abstract
The biological procedure used to determine the nitrogen-corrected True Metabolizable Energy (TMEn) value of feed ingredient is costly and time consuming. Therefore, it is necessary to find an alternative method to accurately estimate the TMEn content. In this study, 2 methods of Multiple Linear Regression (MLR) and Artificial Neural Network (ANN) were developed to describe the TMEn (Kcal kg-1 DM) value on a Dry Matter (DM) basis of Wheat Bran (WB) samples given their chemical composition of Ether Extract (EE), ash, Crude Protein (CP) and Crude Fiber (CF) contents (all used as % of DM). A data set containing 100 WB samples were used to determine chemical composition and TMEn. Accuracy and precision of the developed models were evaluated given their produced prediction values. The results revealed that the developed ANN model [R2= 0.90; Root Mean Square Error (RMSE)= 64.07 Kcal kg-1 DM for training set; and R2= 0.89; RMSE= 82.69 Kcal kg-1 DM for testing set] produced relatively better prediction values of TMEn in WB than those produced by conventional MLR [R2= 0.81; RMSE= 86.76 Kcal kg-1 DM for training set; and R2= 0.84; RMSE= 86.61 Kcal kg-1 DM for testing set]. The developed ANN model may be considered as a promising tool for modeling the relationship between chemical composition and energy of WB samples. To provide the users with an easy and rapid tool, an Excel® calculator, namely, ANN_WB_ME_Poultry, was created to predict the TMEn values in WB sample given its chemical composition and using the developed ANN model.

Keywords


1. Ahmadi, H. 2017. A mathematical function for the description of nutrient-response curve. PloS one, 12, e0187292.
2. Ahmadi, H. and A. Golian. 2010. Growth analysis of chickens fed diets varying in the percentage of metabolizable energy provided by protein, fat, and carbohydrate through artificial neural network. Poult. Sci., 89, 173-179.
3. Ahmadi, H., Golian. A., Mottaghitalab. M. and Nariman-Zadeh, N. 2008. Prediction model for true metabolizable energy of feather meal and poultry offal meal using group method of data handling-type neural network. Poult. Sci., 87, 1909-1912.
4. Ahmadi, H. and Rodehutscord, M. 2017. Application of Artificial Neural Network and Support Vector Machines in Predicting Metabolizable Energy in Compound Feeds for Pigs. Front. Nutr., 4.
5. Aho, P. 2007: Impact on the world poultry industry of the global shift to biofuels. Poult. Sci., 86, 2291-2294.
6. Allen, R. D. 1990. Ingredient analysis table: 1990 edition. Feedstuffs, 62, 24-37.
7. Arab, M. M., Yadollahi, A., Eftekhari, M., Ahmadi, H., Akbari, M. and Khorami, S. S. 2018. Modeling and Optimizing a New Culture Medium for In Vitro Rooting of G×N15 Prunus Rootstock using Artificial Neural Network-Genetic Algorithm. Scientific Reports, 8, 9977.
8. AOAC. International official methods of analysis of AOAC Inernational. 17th ed. Association of Official Analytical Chemists: Arlington, VA; 2000.".
9. Courtin, C. M., Broekaert, W. F., Swennen, K., Lescroart, O., Onagbesan, O., Buyse, J., Decuypere, E., Van de Wiele, T., Marzorati, M. and Verstraete, W. 2008. Dietary inclusion of wheat bran arabinoxylooligosaccharides induces beneficial nutritional effects in chickens. Cereal Chem., 85, 607-613.
10. Dale, N. 1996. The metabolizable energy of wheat by-products. J. Appl. Poult. Res., 5, 105-108.
11. Dayhoff, J. E. and DeLeo, J. M. 2001. Artificial neural networks. Cancer, 91, 1615-1635.
12. De Gorter, H., Drabik, D., Just, D. R. and Kliauga, E. M. 2013. The impact of OECD biofuels policies on developing countries. Agric. Econ, 44, 477-486.
13. Demuth, H., Beale, M. and Hagan, M. 2008. Neural network toolbox™ 6. User’s guide, 10, 11.
14. Desai, K. M., Survase, S. A., Saudagar, P. S., Lele, S. S. and Singhal, R. S. 2008: Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: Case study of fermentative production of scleroglucan. Biochem. Eng. J., 41, 266-273.
15. Farrell, D. 1999. In vivo and in vitro techniques for the assessment of the energy content of feed grains for poultry: a review. Aust. J. Agric. Res., 50, 881-888.
16. Hassan, E. G., Alkareem, A. M. A. and Mustafa, A. M. I. 2008. Effect of fermentation and particle size of wheat bran on the antinutritional factors and bread quality. Pak. J. Nutr, 7, 521-526.
17. Haupt, R. L., Haupt, S. E. and Haupt, S. E. 1998. Practical genetic algorithms. Wiley New York.
18. Hemery, Y., Rouau, X., Lullien-Pellerin, V., Barron, C. and Abecassis, J. 2007: Dry processes to develop wheat fractions and products with enhanced nutritional quality. J. Cereal Sci., 46, 327-347.
19. Hill, F., Anderson, D., Renner, R. and Carew Jr, L. 1960. Studies of the metabolizable energy of grain and grain products for chickens. Poult. Sci., 39, 573-579.
20. Hoseney, R. C. 1994. Principles of cereal science and technology. American Association of Cereal Chemists (AACC).
21. Hunter, A., Kennedy, L., Henry, J. and Ferguson, I. 2000. Application of neural networks and sensitivity analysis to improved prediction of trauma survival. Comput Methods Programs Biomed, 62, 11-19.
22. Jigneshkumar, L. P. and Ramesh, K. G. 2007. Applications of Artificial Neural Networks in Medical Science. Curr. Clin. Pharmacol., 2, 217-226.
23. Losada, B., Rebollar, P. G., Cachaldora, P., Álvarez, C. and de Blas, J. 2009. A comparison of the prediction of apparent metabolisable energy content of starchy grains and cereal by-products for poultry from its chemical components, in vitro analysis or near-infrared reflectance spectroscopy. Span J Agric Res., 813-823.
24. Mateos, G., Jiménez-Moreno, E., Serrano, M. and Lázaro, R. 2012. Poultry response to high levels of dietary fiber sources varying in physical and chemical characteristics. J. Appl. Poult. Res., 21, 156-174.
25. Metayer, J., Grosjean, F. and Castaing, J. 1993. Study of variability in French cereals. Anim. Feed Sci. Technol., 43, 87-108.
26. Mohamed, K., Leclercq, B., Anwar, A., El-Alaily, H. and Soliman, H. 1984. A comparative study of metabolisable energy in ducklings and domestic chicks. Anim. Feed Sci. Technol., 11, 199-209.
27. Nadeem, M. 2005. True metabolizable energy values of poultry feedstuffs in Pakistan. Int. J. Agric. Biol., 7, 990-994.
28. Nascimento, G., Rodrigues, P., Freitas, R., Reis Neto, R., Lima, R. and Allaman, I. 2011. Prediction equations to estimate metabolizable energy values of energetic concentrate feedstuffs for poultry by the meta-analysis process. Arq. Bras. Med. Vet. Zootec., 63, 222-230.
29. National Research Council. 1994. Nutrient Requirements of Poultry. 9th Rev. Ed., Natl. Acad. Press, Washington, DC.
30. Noblet, J. and Perez, J. 1993. Prediction of digestibility of nutrients and energy values of pig diets from chemical analysis. J Anim Sci., 71, 3389-3398.
31. Perai, A. H., Nassiri Moghaddam, H., Asadpour, S., Bahrampour, J. and Mansoori, G. 2010. A comparison of artificial neural networks with other statistical approaches for the prediction of true metabolizable energy of meat and bone meal. Poult. Sci., 89, 1562-1568.
32. Ravindran, V., Abdollahi, M. and Bootwalla, S. 2014. Nutrient analysis, metabolizable energy, and digestible amino acids of soybean meals of different origins for broilers. Poult. Sci., 93, 2567-2577.
33. Rodrigues, P. B., Rostagno, H. S., Albino, L. F. T., Gomes, P. C., Nunes, R. V. and Toledo, R. S. 2002. Energy values of soybean and soybean byproducts, determined with broilers and adult cockerels. Rev. Bras. Zootec, 31, 1771-1782.
34. Roush, W. and Cravener, T. 1997. Artificial neural network prediction of amino acid levels in feed ingredients. Poult. Sci., 76, 721-727.
35. Safdar, M. N., Khalid, N., Muhammad, A., Amer, M. and Saeeda, R. 2009. Physicochemical quality assessment of wheat grown in different regions of Punjab. Pak. J. Agric. Res., 22, 18-23.
36. Sibbald, I. 1976. A bioassay for true metabolizable energy in feedingstuffs. Poult. Sci., 55, 303-308.
37. Slavin, J. 2007: Why whole grains are protective: biological mechanisms. Proc. Nutr. Soc, 62, 129-134.
38. Svihus, B. and Gullord, M. 2002. Effect of chemical content and physical characteristics on nutritional value of wheat, barley and oats for poultry. Anim. Feed Sci. Technol., 102, 71-92.
39. Zhang, W. J., Campbell, L. D. and Stothers, S. C. 1994. An investigation of the feasibility of predicting nitrogen-corrected true metabolizable energy (TMEn) content in barley from chemical composition and physical characteristics. Can. J. Anim. Sci., 74, 355-360.