1. Akhunov E. D., Akhunov A. R., Linkiewicz A. M., Dubcovsky J., Hummel D., Lazo G. et al. 2003 Synteny perturbations between wheat homoeologous chromosomes by locus duplications and deletions correlate with recombination rates along chromosome arms. Proc. Natl. Acad. Sci. USA. 100, 10836-10841.
2. Anderson O. D., Dong L., Huo N., Gu Y. Q. 2012 A new class of wheat gliadin genes and proteins. PLoS ONE 7 (12), 1-9.
3. Arentz-Hansen H., Korner R., Molberg O., Quarsten H., Vader W., Kooy Y. M. C. et al. 2000 The intestinal T cell response to alpha-gliadin in adult celiac disease is focused on a single deamidated glutamine targeted by tissue trans glutaminase. J. Exp. Med.191(4), 603–612.
4. Blake N. K., Lehfeldt B. R., Lavin M. and Talbert L. E. 1999 Phylogenetic reconstruction based on low copy DNA sequence data in an allopolyploid: The B genome of wheat. Genome42, 351-360.
5. Chen F., Xu C., Chen M., Wang Y. and Xia G. 2008 A new α-gliadin gene family for wheat breeding, somatic introgression line II-12 derived from Triticumaestivum and Agropyronelongatum. Mol. Breeding 22(4), 675-685.
6. Gu Y. Q., Crossman C., Kong X. Y., Luo M. C., You F. M., Coleman-Derr D. et al. 2004 Genomic organization of the complex α-gliadin gene loci in wheat. Theor. Appl. Genet.109(3), 648-57.
7. Huang S., Sirikhachornkit A., Su X., Faris J. D., Gill B. S. and Haselkorn R. 2002 Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc. Natl. Acad. Sci. USA. 99, 8133-8138.
8. Kawaura K., Wu J., Matsumoto T., Kanamori H., Katagiri S. and Ogihara Y. 2012 Genome change in wheat observed through the structure and expression of α/β-gliadin genes. Funct . Integr. Genomic 12, 341–355.
9. Li G. R., Lang T., Yang E. N., Liu C. and Yang Z. J. 2014a Characterization and phylogenetic analysis of α-gliadin gene sequences reveals significant genomic divergence in Triticeae species. J. Genet.93, 725–31
10. Li G., Zhang T., Ban Y. and Yang Z. 2010 Molecular characterization and evolutionary analysis of α-gliadin genes from Eremopyrumbonaepartis (Triticeae). J. Agric. Sci.2(4), 30-36.
11. Li Y., Xin R., Zhang D. and Li S. 2014b Molecular characterization of α-gliadin genes from common wheat cultivar Zhengmai 004 and their role in quality and celiac disease. Crop J.2, 10–21.
12. Masci S., D’Ovidio R., Lafiandra D. and Kasarda D. D. 2000 A 1B coded low-molecular-weight glutenin subunit associated with quality in durum wheats show strong similarity to subunits present in some bread wheat cultivars. Theor. Appl. Genet.100, 396–400.
13. Mc Manus R. and Kelleher D. 2003 Celiac disease-the villain unmasked? New Engl. J. Med.348, 2573–2574.
14. Molberg O., Solheim F. N., Jensen T., Lundin K. E., Arentz-Hansen H., Anderson O. D. et al. 2003 Intestinal T-cell responses to high molecular weight glutenins in celiac disease. Gastroenterology 125, 337–344.
15. Molberg Ø., Uhlen A. K., Jensen T., Flæte N. S., Fleckenstein B., Arentz Hansen H., et al. 2005 Mapping of gluten T cell epitopes in the bread wheat ancestors: implications for celiac disease. Gastroenterology128, 393–401.
16. Paulsen G., Lundin K.E., Gjertsen H. A., Hansen T., Sollid L. M., Thorsby E. 1995 HLA-DQ2-restricted T-cell recognition of gluten-derived peptides in celiac disease. Influence of amino acid substitutions in the membrane distal domain of DQ beta 1*0201. Hum. Immunol. 42, 145–153.
17. Petersen G., Seberg O., Yde M. and Berthelsen K. 2006 Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticumaestivum). Mol. Phylogenet. Evol. 39, 70-82.
18. Qi P. F., Chen Q., Ouellet T., Wang Z., Cheng-Xing Le, Wei M. et al. 2013 The molecular diversity of α-gliadin genes in the tribe Triticeae. Genetica141, 303–310.
19. Salentijn E. M. J, Goryunova S. V., Bas N., Van den Meer I. M., Van den Broeck H., Bastien T. et al. 2009 Tetraploid and hexaploid wheat varieties reveal large differences in expression of alpha-gliadins from homoeologous Gli-2 loci. BMC Genomics10 : 48, doi:10.1186/1471-2164-10-48
20. Salentijn E. M. J., Esselink D. G., Goryunova S. V., Vanden Meer I. M., Gilissen L. J. W. J. and Smulders, M. J. M. 2013 Quantitative and qualitative differences in celiac disease epitopes among durum wheat varieties identified through deep RNA-amplicon sequencing. BMC Genomics14, 1-16.
21. Shewry P. R. and Halford N.G. 2002 Cereal seed storage proteins structures, properties and role in grain utilization. J. Exp. Bot.53, 947–958.
22. Shewry P. R. and Tatham A.S. 2016 Improving wheat to remove coeliac epitopes but retain functionality. J. Cereal Sci.67, 12-21.
23. Sjostrom H., Lundin K. E., Molberg O., Korner R., McAdam S. N., Anthonsen D. et al. 1998 Identification of α-gliadin T-cell epitope in coeliac disease: general importance of gliadin deamidation for intestinal T-cell recognition. Scand. J. Immunol.48, 111–115.
24. Spaenij-Dekking L., Kooy-Winkelaar Y., Van Veelen P., Drijfhout J. W., Jonker H., Van Soest L. et al. 2005 Natural variation in toxicity of wheat: potential for selection of nontoxic varieties for celiac disease patients. Gastroenterology 129, 797–806.
25. Tajima F. 1989 Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics123, 585–595.
26. Talbert L. E., Blake N. K., Storlie E. W. and Lavin M. 1995 Variability in wheat based on low-copy DNA sequence comparisons. Genome38, 951-57.
27. Tamura K., Stecher G., Peterson D., Filipski A. and Kumar S. 2013 MEGA 6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol.30, 2725-2729.
28. Thompson J. D., Higgins D. G. and Gibson T. J. 1994 CLUSTAL W: Improving the sensitivity of progressive sequence alignment through sequence weighting, position-specific gaps penalties and weight matrix choice. Nucleic Acids Res.22 (22), 4673–4680.
29. Timothy L., Bailey L. and Charles E. 1994 Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proceedings of the second international conference on intelligent systems for molecular biology. 28-36.
30. Vaccino P., Becker H. A., Brandolini A., Salamini F. and Kilian B. 2009 A catalogue of Triticummonococcum genes encoding toxic and immunogenic peptides for celiac disease patients. Mol. Genet. Genomics281, 289–300.
31. Vader W., Stepniak D., Kooy Y., Mearin L., Thompson A., van Rood J. J. et al. 2003 The HLA-DQ2 gene dose effect in celiac disease is directly related to the magnitude and breadth of gluten-specific T cell responses. Proc. Natl. Acad. Sci. USA 100, 12390–12395.
32. Van den Broeck H., Hongbing C., Lacaze X., Dusautoir J. C. , Gilissen L., Smulders M. et al. 2010 In search of tetraploid wheat accessions reduced in celiac disease-related gluten epitopes. Mol. Biosyst.6, 213-220.
33. Van Herpen T. W. J. M., Goryunova S. V., van der Schoot J., Mitreva M., Salentijn E., Vorst O. et al. 2006 Alpha-gliadin genes from the A, B, and D genomes of wheat contain different sets of celiac disease epitopes. BMC Genomics7:1,doi:10.1186/1471-2164-7-1.
34. Vande Wal Y., Kooy Y. M., vanVeelen P. A., Pena S. A., Mearin L. M., Molberg O. et al. 1998 Small intestinal T cells of celiac disease patients recognize a natural pepsin fragment of gliadin. Proc. Natl. Acad. Sci. USA 95, 10050–10054.
35. Xie Z., Wang C., Wang K., Wang S., Li X., Zhang Z. et al. 2010 Molecular characterization of the celiac disease epitope domains in α-gliadin genes in Aegilopstauschiiand hexaploids wheats (Triticumaestivum L.). Theor. Appl. Genet.121, 1239–1251.