Genetic Structure Characteristic of Aegilops tauschii from Different Geographical Populations and the Origin of Chinese Population

Document Type : Original Research

Authors
of Plant Stress Biology, State Key Laboratory of Cotton Biology, School1of1Life1Science, Henan University, Kaifeng 475004, People Republic of China.
Abstract
As the diploid progenitor of common wheat, Aegilops tauschii is used as a genetic resource for improving common wheat. In this study, the genetic differentiation index between Yellow River (Shaanxi and Henan) and Xinjiang groups (0.322, 0.377) were obviously higher than between the former and Central Asia groups (0.231, 0.289). Meanwhile, the genetic distances between Yellow River (Shaanxi and Henan) and Xinjiang groups (0.285, 0.329) exhibit larger values compared with those between the former and Central Asia groups (0.283, 0.321). These results reveal that the genetic constitution of Yellow River and Central Asia groups is of more similarity compared with Xinjiang group. The phylogenetic tree demonstrates that Ae. tauschii in Yellow River and part of that in Central Asia are firstly gathered to be a subset. Then the subset and Xinjiang group are classified into a clade, which could be assigned to Central Asia and Middle East populations, implying that Ae. tauschii in Yellow River has a closer relationship with part of that in Central Asia compared with Xinjiang. Our finding further clarifies that Ae. tauschii in Yellow River might be directly derived from one/several types from Central Asia such as Turkmenistan, Pakistan, and Afghanistan.

Keywords

Subjects


1. Bordbar, F., Rahiminejad, M. R., Saeidi, H. and Blattner, F. R. 2011. Phylogeny and genetic diversity of D-genome species of Aegilops and Triticum (Triticeae, Poaceae) from Iran based on microsatellites, ITS, and trnL-F. Plant. Syst. Evol., 291: 117-131.
2. Dale, Z., Jie, H., Luyu, H., Cancan, Z., Yun, Z., Yarui, S. and Suoping, L. 2017. An advanced backcross population through synthetic octaploid wheat as a “bridge”: development and QTL detection for seed dormancy. Front. Plant. Sci., 8: 2123.
3. Dvorak, J., Luo, M. C., Yang, Z. L. and Zhang, H. B. 1998. The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor. Appl. Genet., 97: 657-670.
4. Dvorak, J., Luo, M. C. and Akhunov, E. D. 2011. N.I Vavilov’s theory of centres of diversity in the light of current understanding of wheat diversity, domestication and evolution. Czech. J. Genet. Plant. Breed., 47: 20-27.
5. Dvorak, J., Deal, K. R., Luo, M. C., You, F. M., von Borstel, K. and Dehghani, H. 2012. The origin of spelt and free-threshing hexaploid wheat. J. Hered., 103: 426-441.
6. Gill, B. S. and Raupp, W. J. 1987. Direct genetic transfers from Aegilops squarrosa L. to hexaploid wheat. Crop. Sci., 27(3): 445-450.
7. Gogniashvili, M., Jinjikhadze, T., Maisaia, I., Akhalkatsi, M., Kotorashvili, A., Kotaria, N., Beridze, T. and Dudnikov, A. J. 2016. Complete chloroplast genomes of Aegilops tauschii Coss. and Ae. cylindrica Host sheds light on plasm on D evolution. Curr. Genet., 62(4): 1-8.
8. Goldasteh, M., Mehregan, I., Naghavi, M. R. and Nejadsattari, T. 2019. Molecular Characterization of Low Molecular Weight Glutenin (LMW) Genes in Triticeae Species with D Genome. J. Agr. Sci. Tech., 21(5): 1287-1299.
9. Hammer, K. 1980. Vorarbeiten zur monographischen Darstellung von Wildpflanzensortimenten: Aegilops L. Kulturpflanze., 28: 33-180.
10. Han, Y. J., Chen, W. C., Yang, F. B., Wang, X. H., Dong, M. F., Zhou, P. and Shang, F. D. 2015. cDNA-AFLP analysis on 2 Osmanthus fragrans cultivars with different flower color and molecular characteristics of MYB1 gene. Trees-Struct. Funct., 29(3): 931-940.
11. Imtiaz, M., Ogbonnaya, F. C., Oman, J. and Van Ginkel, M. 2008. Characterization of quantitative trait loci controlling genetic variation for preharvest sprouting in synthetic backcross-derived wheat lines. Genetics., 178: 1725-1736.
12. Kihara, H. and Tanaka, M. 1958. Morphological and physiological variation among Aegilops squarossa strains collected in Pakistan, Afghanistan and Iran. Preslia., 30: 241-251.
13. Kunert, A., Naz, A. A., Dedeck, O., Pillen, K. and Léon, J. 2007. AB-QTL analysis in winter wheat: I. Synthetic hexaploid wheat (T. turgidum ssp. dicoccoides × T. tauschii) as a source of favourable alleles for milling and baking quality traits. Theor. Appl. Genet., 115: 683-695.
14. Li, P., Kirungu, J. N., Lu, H., Magwanga, R. O., Lu, P., Cai, X., Zhou, Z., Wang, X., Hou, Y., Wang, Y., Xu, Y., Peng, R., Cai, Y., Zhou, Y., Wang, K. and Liu, F. 2018. SSR-Linkage map of interspecific populations derived from Gossypium trilobum and Gossypium thurberi and determination of genes harbored within the segregating distortion regions. PLoS. ONE., 13(11): e0207271.
15. Liu, K. and Muse, S. V. 2005. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics., 21(9): 2128-2129.
16. Lubbers, E. L., Gill, K. S., Cox, T. S. and Gill, B. S. 1991. Variation of molecular markers among geographically diverse accessions of Triticum tauschii. Genome., 34: 354-361.
17. Matsuoka, Y., Mori, N. and Kawahara, T. 2005. Genealogical use of chloroplast DNA variation for intraspecific studies of Aegilops tauschii Coss. Theor. Appl. Genet., 111: 265-271.
18. Matsuoka, Y., Nasuda, S., Ashida, Y., Nitta, M., Tsujimoto, H., Takumi, S. and Kawahara, T. 2013. Genetic Basis for Spontaneous Hybrid Genome Doubling during Allopolyploid Speciation of Common Wheat Shown by Natural Variation Analyses of the Paternal Species. PLoS. ONE., 8(8): e68310.
19. Matsuoka, Y., Takumi, S. and Kawahara, T. 2015. Intraspecific lineage divergence and its association with reproductive trait change during species range expansion in central Eurasian wild wheat Aegilops tauschii Coss. (Poaceae). BMC. Evol. Biol., 15: 213.
20. Mizuno, N., Yamasaki, M., Matsuoka, Y., Kawahara, T. and Takumi, S. 2010. Population structure of wild wheat D-genome progenitor Aegilops tauschii Coss.: implications for intraspecific lineage diversification and evolution of common wheat. Mol. Ecol., 19: 999-1013.
21. Naghavi, M. R., Aghaei, M. J., Taleei, A. R., Omidi, M., Mozafari, J. and Hassani, M. E. 2009. Genetic diversity of the D-genome in T. aestivum and Aegilops species using SSR markers. Genet. Resour. Crop. Evol., 56: 499-506.
22. Naz, A. A., Kunert, A., Lind, V., Pillen, K. and Léon, J. 2008. AB-QTL analysis in winter wheat: II. Genetic analysis of seedling and field resistance against leaf rust in a wheat advanced backcross population. Theor. Appl. Genet., 116: 1095-1104.
23. Peakall, R. and Smouse, P. E. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes., 6(1): 288-295.
24. Saeidi, H., Rahiminejad, M. R., Vallian, S. and Heslop-Harrison, J. S. 2006. Biodiversity of diploid D-genome Aegilops tauschii Coss. in Iran measured using microsatellites. Genet. Resour. Crop. Evol., 53: 1477-1484.
25. Sohail, Q., Shehzad, T., Kilian, A., Eltayeb, A. E., Tanaka, H. and Tsujimoto, H. 2012. Development of diversity array technology (DArT) markers for assessment of population structure and diversity in Aegilops tauschii. Breeding. Sci., 62: 38-45.
26. Sukhwinder, S., Chahal, G. S., Singh, P. K. and Gill, B. S. 2012. Discovery of desirable genes in the germplasm pool of Aegilops tauschii Coss. Indian. J. Genet., 72(3): 271-277.
27. Wang, J., Luo, M. C., Chen, Z., You, F. M., Wei, Y., Zheng, Y. and Dorak, J. 2013. Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat. New. Phytol., 198: 925-937.
28. Wei, H., Li, J., Peng, Z., Lu, B., Zhao, Z. and Yan, W. 2008. Relationships of Aegilops tauschii revealed by DNA fingerprints: The evidence for agriculture exchange between China and the West. Prog. Nat. Sci., 18: 1525-1531.
29. Yen, C., Yang, J. L., Cui, N. R., Zhong, J. P., Dong, Y. S., Sun, Y. Z. and Zhong, G. Y. 1984. The Aegilops tauschii Cosson from Yi-li, Xinjiang, China. Acta. Agronomica. Sinica., 10(1): 1-8.
30. Yu, M., Chen, G., Zhang, L., Liu, Y., Liu, D., Wang, J., Pu, Z., Zhang, L., Lan, X., Wei, Y., Liu, C. and Zheng, Y. 2014. QTL Mapping for important agronomic traits in synthetic hexaploid wheat derived from Aegiliops tauschii ssp. tauschii. J. Integr. Agric., 13: 1835-1844.
31. Zhang, D. L., Zhou, Y., Zhao, X. P., Lv, L. L., Zhang, C. C., Li, J. H., Sun, G. L., Li, S. P. and Song, C. P. 2018. Development and utilization of introgression lines using synthetic octaploid wheat (Aegilops tauschii × Hexaploid Wheat) as donor. Front. Plant. Sci., 9: 1113.
32. Zhao, L., Ning, S., Yi, Y., Zhang, L., Yuan, Z., Wang, J., Zheng, Y., Hao, M. and Liu, D. 2018. Fluorescence in situ hybridization karyotyping reveals the presence of two distinct genomes in the taxon Aegilops tauschii. BMC Genomics, 19: 3.
33. Zhukovsky, P. M. 1928. A critical-systematical survey of the species of the genus Aegilops L. Bull. Appl. Bot. Genet. Plant. Breed., 18: 417-609.