Phenolic Content and Antioxidant Capacity of Infusions of Vitis tiliifolia (Humb & Bonpl. Ex Schult.) Leaves

Document Type : Original Research

Authors
1 Faculty of Agricultural Biological Sciences, University of Veracruzana, Córdoba, Veracruz, Mexico.
2 Oriente Regional University Center, Chapingo Autonomous University, Huatusco, Veracruz, 94100. Mexico.
3 Natural Products Laboratory, Chemistry Area, Chapingo Autonomous University, km 38.5 Carretera Mexico_Texcoco, Chapingo, Mexico state, 56230, Mexico.
4 Department of Agricultural Sciences, Food and Environmental, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy.
5 Advanced Molecular Studies Network, Biomimic® Cluster, National Institute of Ecology, Xalapa, Veracruz, Mexico.
Abstract
The antioxidant capacity and polyphenol contents in leaves of Vitis tiliifolia are unknown. Leaves from four accessions of Vitis tiliifolia grown ex situ in the collection of the Universidad Autónoma Chapingo, Veracruz - Mexico, were collected in Autumn (2015) and Spring (2016), dehydrated and used to make water infusions at 80oC for 5 minutes. The four accessions were propagated from wild grapevines which grow in Huatusco, Atlahuilco, Cosautlan and Ixtaczoquitlan. The aqueous infusions were analyzed to evaluate the antioxidant capacity by application of 2,2-DiPhenyl-1-PicrilHydrazyl (DPPH), and the total phenolic compounds (total reducing power) were determined spectrophotometrically by the Folin-Ciocalteu method. The polyphenols identification and quantification were determined using an ultrahigh resolution liquid chromatograph. Fourteen compounds, including trans-resveratrol, quercetin and rutin were identified. The infusions obtained from leaves of Huatusco and Ixtaczoquitlan accessions had the highest contents of total phenols. The infusions from leaves of Cosautlan and Ixtaczoquitlan accessions showed the highest antioxidant activities. The results indicate that the Vitis tiliifolia leaves in infusions are a rich source of bioactive compounds. This is the first time that the phenolics content and the antioxidant capacity of leaf infusions of Vitis tiliiflolia leaves are reported. As a large variability was found in the compounds of the different accessions, a selection of the genotypes with the most suitable composition of the leaves for their use in infusions and subsequent cultivation could represent a way for the valorization of Vitis tiliifolia and to diversify the agricultural productions in tropical areas.

Keywords

Subjects


1 Avonti, B. T., Nazma, S., Cadi, P. B., Mohiduzzaman, S. I., and Montaz, B. 2014. Antioxidant capacity and total phenolic contents in hydrophilic extracts of selected Bangladeshi medicinal plants. Asian Pacific J. Trop. Med., 7, S568-S573. https://www.ncbi.nlm.nih.gov/pubmed/25312185
2 Bárcena, L., Bebeta, A., Matallana, C., and Torija, E. 2014. Valor nutritivo de la hoja de Vitis vinifera L. Actas de Horticultura. Comunicaciones Técnicas. Sociedad Española de Ciencias Hortícolas. XIII Jornadas del Grupo de Horticultura. I Jornadas del Grupo de Alimentación y Salud, 65, 83-88. http://www.sech.info/ACTAS/Acta%20n%C2%BA%2065.%20XIII%20Jornadas%20del%20Grupo%20de%20Horticultura/Alimentaci%C3%B3n%20y%20Salud%20II/Valor%20nutritivo%20de%20la%20hoja%20de%20Vitis%20vinifera%20L.pdf
3 Barnes, S., and Prasain, J. 2005. Current progress in the use of traditional medicines and nutraceuticals. Curr. Opin. Plant Biol. 8, 324-328. https://www.ncbi.nlm.nih.gov/pubmed/15860430
4 Brand-Williams, W., Cuvelier, M. E., and Berset, C. 1995. Use of free radical method to evaluate antioxidant activity. Lebens. Wiss. Technol., 28, 25-30. http://radio.cuci.udg.mx/bch/EN/Manuals/Techniques/DPPH-original_LebensWissTechnol_1995-v28-p25.pdf
5 Cottar, H., Nivet, A. V., Laguillier, M. C., and Beaudeux, J. L. 2010. Resveratrol bioavailability and toxicity in humans. Mol. Nutr. Food Res., 54, 7-16. https://www.ncbi.nlm.nih.gov/pubmed/20013887
6 Cruz-Castillo, J. G., Franco-Mora O., and Famiani, F. 2009. Presence and uses of wild grapevines in Central Veracruz, Mexico. J. Int. Sci. Vigne Vin, 43, 77-81. https://www.researchgate.net/publication/264347550_Presence_and_uses_of_wild_grapevine_Vitis_spp_in_the_central_region_of_Veracruz_in_Mexico
7 De Andrés, M.T., Benito, A., Pérez, R. G., Ocete, R., López, M.A., Gaforio, L., Muñoz, G., Cabello, F., Martínez-Zapater, J. M., and Arroyo, G. R. 2012. Genetic diversity of wild grapevine populations in Spain and their genetic relationship with cultivated grapevines. Mol. Ecol., 21,800-816. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-294X.2011.05395.x
8 Durand-Hulak, M., Dugrand, A., Duval, T., Bidel, L. P. R., Jay-Allemand, C., Froelicher, Y. and Fanciullino, A. L. 2015. Mapping the genetic and tissular diversity of 64 phenolic compounds in Citrus species using a UPLC-MS approach. Ann. Bot.,, 115(5), 861–877. https://www.ncbi.nlm.nih.gov/pubmed/25757470
9 Farah, A., De Paulis, T., Trugo, L.C., and Martin, P.R. 2005. Effect of roasting on the formation of chlorogenic acid lactones in Coffee. J. Agric. Food Chem. 2005, 53, 1505−1513. https://pubs.acs.org/doi/full/10.1021/jf048701t?src=recsys
10 Lacopini, P., Bald, M., Storchi P., and Sebastiani, L. 2008. Catechin, epicatechin, quercetin, rutin and resveratrol in red grape: Content, in vitro antioxidant activity and interactions. J. Food Comp. Anal. 21, 589-598. https://www.sciencedirect.com/science/article/pii/S0889157508000653
11 Jeandet, P., Douillet, B. A. C., Bessis, R., Debord, S., Sbaghi, M., and Adrian, M. 2002. Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J. Agric. Food Chem., 50, 2731-2741. https://www.ncbi.nlm.nih.gov/pubmed/11982391
12 Jeong, H. L., Jin, W. J., Kwang, D. M.,and Kee, J. P. 2008. Effects of anti-browning Agents on poliphenoloxidase activity and total phenolics as related to browning of frest-cut Fuji Apple. ASEAU Food J., 403, 136-138. http://www.ifrj.upm.edu.my/afjv15(1)2008/79-87.pdf
13 Jiao, J., Gai, Q., Y, Luo, M., Wang, W., Gu, Ch. B., Zhao, Ch., Zu, J., Wei, G. F., and Fu, Y, J. 2013. Compariison of main bioctive compounds in tea infusions with different seasonal Forsythia suspensa leaves by liquid chromatography-tanden mass spctrometry and evaluation of antioxidant activity. Food Res. Inter., 53, 857-863. https://www.sciencedirect.com/science/article/pii/S0963996912005418
14 Jiménez, M., Juárez, N., Jiménez, V. M., Monribot, V. J. L., and Guerrero, A. J. A. 2018. Phenolic compounds and antioxidant activity of wild grape (Vitis tiliifolia). Italian International J. Food Sci. 30:128-143. file:///G:/vitistilifoliafenoles975-1-4853-1-10-20180129%20(1).pdf
15 Nijveltd, R.J., Van Nood, E., Van Hoorn, D. E.C., Boelens, P.G., Van Norren, K., and Van Leewen, P. A. M. 2001. Flavonoids: a review of probable mechanisms of action and potential applications. Amer. J. Clin. Nutr., 74, 418-425. https://www.ncbi.nlm.nih.gov/pubmed/11566638
16 Ortiz, P. 2004. Tratamiento de insuficiencia venosa crónica. El papel del extracto de hojas de vid roja. Fitoter., 23, 6. file:///C:/Users/Admin/Downloads/13063510_S300_es.pdf
17 Pakade, V., Cukrowskai, E., and Chimura, L. 2013. Comparison of antioxidant activity of Moringa oleifera and selected in South Africa. South Afri. J. Sci., 109, 2-5. http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S0038-23532013000200006
18 Pastrana, B, E., Akoh, C, C., Sellappan, S., and Krewer, G. 2003. Phenolic content and antioxidant capacity of Muscadine Grapes. J. Agr. Food Chem., 51, 5497-5503. https://pubs.acs.org/doi/abs/10.1021/jf030113c
19 Pignatelli, P., Ghiselli, A., Buchetti, B., Carnevale, R., Natella, F., Germano, G., Fimognari, F., Di Santo, S., Lenti, L., and Violi, F. 2006. Polyphenols synergistically inhibit oxidative stress in subjects given red and white wine. Atheroscler., 188, 77-83. https://www.ncbi.nlm.nih.gov/pubmed/16310197
20 Ramos, A., Vizoso, A., Piloto, J., García, A., Rodriguez, C, A., and Rivero, R. 2003. Screening and antimutagenicity via antioxidant activity in Cuban medicinal plants. J. Ethnophar., 87, 241-246. https://www.ncbi.nlm.nih.gov/pubmed/12860316
21 Realini, P.A. 1981. Determination of priority pollutant phenols in water by HPLC. J. Chromatographic Sci., 19 (3): 124-129. https://academic.oup.com/chromsci/article-abstract/19/3/124/349412?redirectedFrom=fulltext
22 Singleton, V. L., and Rossi, J. A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Amer. J. Enol. Vit.,16, 144-158. http://garfield.library.upenn.edu/classics1985/A1985AUG6900001.pdf
23 Tobar, R, R., Franco, M, O., Morales, R. E. J., and Cruz-Castillo, J. G. 2009. Contenido de resveratrol en hojas de vides silvestres (Vitis spp.) mexicanas. Rev. Fac. Cien. Agra. Uni. Nac. Cuyo, 41(2), 127-137. https://www.redalyc.org/pdf/3828/382837645010.pdf
24 Tobar, R. R. Franco., M, O. Morales, R. E. J., and Cruz-Castillo. 2010. Phenols of pharmacological interest in leaves of wild grapevines (Vitis spp.) of Mexico. Bol. Latinoamer. Cari. Plan. Medici. Arom..10, 167-172. http://www.redalyc.org/pdf/856/85617384011.pdf
25 Theoharides, T.C., and Bielory, L. 2004. Mast cells and mast cell mediators as targets of dietary supplements. Ann. Aller., Ast. Immun., 93, 24-34. http://emerald.tufts.edu/~ttheoh01/cam-theoharides.pdf
26 Tröndle, D., S. Schröder, H. Kassemeyer, Ch. Kiefer, M.A. Koch, and P. Nick. 2010. Molecular phylogeny of the genus vitis (Vitaceae) based on plastid markers. Amer. J. Bot. 97(7): 1168-1178. https://onlinelibrary.wiley.com/doi/pdf/10.3732/ajb.0900218
27 Wang, S.Y., Faust, M., Steffens, G.L. 1985. Metabolic changes in cherry flower buds associated with breaking of dormancy in early and late blooming cultivars. Physio. Plant. 65(1):89-94 https://doi.org/10.1111/j.1399-3054.1985.tb02365.x
28 Yilmaz, Y., and Toledo, R.T. 2004. Health aspects of functional grape seed constituents. Tre. Food Sci Technol, 15, 422-33. https://www.sciencedirect.com/science/article/abs/pii/S0924224404001128
29 Yuki, S., Shirou, I., Toshimitsu, K., Jiro, O., Masaki, K., Takashi. H., Mitsuru, S., and Ken, I. 2011. In vitro and in vivo antioxidant properties of chlorogenic acid and cafeic acid. Inter. J. Phar., 403, 136-138. https://kundoc.com/pdf-in-vitro-and-in-vivo-antioxidant-properties-of-chlorogenic-acid-and-caffeic-acid.html
30 Zamora, R, R., Andres, L, C., and Lamuela, R. M. 2008. Concentrations of resveratrol and derivatives in foods and estimation of dietary intake in a Spanish population: European Prospective Investigation into Cancer and Nutrition (EPIC)-Spain cohort. Br. J. Nutr., 100, 188-196. https://www.ncbi.nlm.nih.gov/pubmed/18096094
31 Zhu K, H., Lian, C, H., Guo, X, N., Zhuo, H, M. (2011). Antioxidant activities and total phenolic contents of various extracts from defatted wheat germ. Food Chem., 126, 122-126. https://www.sciencedirect.com/science/article/pii/S0308814610015724