Effects of PGPR Formulations, Chemical Fertilizers, and Their Combinations on Physiological Traits and Quality of Bracts of Poinsettia

Document Type : Original Research

Authors
Ataturk University, Agriculture Faculty, Department of Horticulture, Erzurum, Turkey.
Abstract
This study was carried out to determine the effects of different PGPR formulations, chemical fertilizers, and their combinations on some color characteristics and nutrient content of bract leaf of two cultivars of Euphorbia pulcherrima Willd. ex Klotzsch in a research greenhouse between July 2015 and July 2017. The treatments included bacterial formulations: (1) BI: Paenibacillus polymyxa TV-12E+Pseudomonas putida TV-42A+Pantoea agglomerans RK-79, (2) BII: Bacillus megaterium TV-91C+Pantoea agglomerans RK-92+Bacillus subtilis TV-17C, (3) BIII: Bacillus megaterium TV-91C+Pantoea agglomerans RK-92+Kluyvera cryocrescens TV-113C, and (4) BIV: Bacillus megaterium TV-91C+Pantoea agglomerans RK-79+Bacillus megaterium TV-6D). Also, fertilizer treatments included the full amount of commonly used Chemical Fertilizer (CF= 150 g 100 L-1) and combination of the reduced amount of chemical fertilizer by 50% with each bacterial formulation, and control. The first red leaves, life of bracts, color properties (L, a* and b*), content of anthocyanin, chlorophyll content in green leaf, macro and micronutrient contents of bracts were evaluated in the experiment. CF and BII+50%CF applications encouraged the coloring of bract leaves early (4.01%). It was determined that CF (7.76%), BI+50%CF (6.03%) and BII+50%CF (5.27%) applications significantly increased chlorophyll content of poinsettia bract when compared to the control. Darker colored bracts were obtained from BI and BIV applications compared to the control. The highest total nitrogen amount (3.69%), soluble phosphorus (4,285.33 mg kg-1), potassium (28,132.45 mg kg-1) and calcium (8,299.03 mg kg-1) amount were found in the BII+50%CF application. It was determined that bacterial formulations BI, BIV, BIV+50%CF and BII+50%CF had positive effects on some plant aesthetic, quality characteristics, and nutrient content of bract of poinsettia and can be used in poinsettia production stage as one of the biological products. Thus, bacterial formulations may replace or reduce use of chemical fertilizers in poinsettia production.

Keywords

Subjects


1. Adesemoye, A. O., Torbert H. A. and Kloepper J. W. 2010. Increased plant uptake of nitrogen from 15N-depleted fertilizer using plant growth-promoting rhizobacteria. Appl. Soil Ecol., 46(1): 54-58. https://doi.org/10.1016/j.apsoil.2010.06.010
2. Anaç, D. and Esetlili B. Ç. 2011. Soil knowledge and plant nutrition. T. C. Anadolu University Publication, No: 2302, Eskisehir (in Turkey).
3. Arab, A, Zamani G. R., Sayyari M. H. and Asili J. 2015. Effects of chemical and biological fertilizers on morpho-physiological traits of marigold (Calendula officinalis L.). Eur. J. Med. Chem., 8(1): 60, 68. doi: 10.9734/EJMP/2015/16697
4. Ayala Arreola, J., Castillo González, A. M., Valdez Aguilar, L. A., Colinas León, M. T., Pineda Pineda, J., and Avitia Garcia, E. 2008. Effect of calcium, boron and molybdenum on plant growth and bract pigmentation in poinsettia. Rev. Fitotec. Mex., 31(2): 165-172. http://www.redalyc.org/articulo.oa?id=61031210
5. Bahadır, P. S., Liaqat F. and Eltem R. 2018. Plant growth promoting properties of phosphate solubilizing Bacillus species isolated from the Aegean Region of Turkey. Turk. J. Bot., 42(2): 183-196. doi:10.3906/bot-1706-51
6. Bennett, M. D., Price H. J. and Johnston J. S. 2008. Anthocyanin inhibits propidium iodide DNA fluorescence in Euphorbia pulcherrima: implications for genome size variation and flow cytometry. Ann. Bot., 101(6): 777–790. https://doi.org/10.1093/aob/mcm303
7. Chavada, J. R., Thumar B. V., Vihol A. N., Patel V. S. and Padhiyar B. M. 2017. Effect of potting media on growth, flower yield and quality of rose (Rosa hybrida L.) cv. top secret under protected condition. Int. J. Pure Appl. Biosci., 5(5): 821-827. http://krishikosh.egranth.ac.in/handle/1/5810034372
8. Epstein, E. and Bloom A. 2005. Mineral nutrition of plants: principles and perspectives. 2nd Edition, Sunderland, Mass: Sinauer Associates, USA.
9. Eşitken, A., Pırlak L., Turan M. and Sahin F. 2006. Effects of floral and foliar application of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry. Sci. Hort., 110(4): 324-327. https://doi.org/10.1016/j.scienta.2006.07.023
10. Esquivel, C. 2013. Relación nitrogeno-potasio en la solución nutritiva sobre desarrollo y calidad en plantas de nochebuena. Tesis (MC En Horticultura).--UACH. Departamento de Fitotecnia. Instituto de Horticultura. (No. Tesis CD-284.). Chapingo, Estado de Mexico.
11. Fasim, F., Ahmed N., Parsons R. and Gadd G. M. 2002. Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol. Lett., 213(1): 1–6. https://doi.org/10.1111/j.1574-6968.2002.tb11277.x
12. Gupta, G., Parihar, S. S., Ahirwar, N. K., Snehi, S. K., and Singh, V. 2015. Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J. Microb. Biochem. Technol., 7(2): 096-102.
13. İbrikçi, H., Gülüt K. Y. and Güzel N. 1994. Plant analysis techniques in fertilization. Çukurova University Faculty of Agriculture Publications No: 95, Adana, 85p.
14. Ipek, M., Pirlak, L., Esitken, A., Figen Dönmez, M., Turan, M., and Sahin, F. 2014. Plant Growth-Promoting Rhizobacteria (PGPR) increase yield, growth and nutrition of strawberry under high-calcareous soil conditions. J. Plant Nutr., 37(7), 990-1001.
15. Jaakola, L. 2003. Flavonoid biosynthesis in bilberry (Vaccinium myrtillus L.). Academic Dissertation, the Faculty of Science, University of Oulu. 44 p. http://herkules.oulu.fi/isbn9514271599/
16. Jones, A. P. 1999. Indoor air quality and health. Atmos. Environ., 33: 4535-4564. https://doi.org/10.1016/S1352-2310(99)00272-1
17. Junqueira, A. H. and Peetz M. 2017. Brazilian consumption of flowers and ornamental plants: habits, practices and trends. Ornam. Hortic., 23(2): 178-184. https://doi.org/10.14295/oh.v23i2.1070
18. Kannangara, C. G. and Hansson M. 1998. Arrest of chlorophyll accumulation prior to anthocyanin formation in Euphorbia pulcherrima. Plant Physiol. Biochem., 36(12): 843-848. https://doi.org/10.1016/S0981-9428(99)80001-1
19. Karakurt, H. and Aslantaş R. 2010. Effects of some plant growth promoting rhizobectaria (PGPR) strains on plant growth and leaf nutrient content of apple. J. Fruit Ornam. Plant Res., 18(1): 101-110.
20. Karaman, M. R., Adiloğlu A., Brohi A. R., Güneş A., İnal A., Kaplan M., Katkat A. V., Korkmaz A., Okur N., Ortaş İ, Saltalı K., Taban S., Turan M., Tüfenkçi Ş., Eraslan F. and Zengin M. 2012. Plant nutrition. Dumat Ofset, Ankara, 1080p.
21. Karthikeyan, B., Joe, M. M., Jaleel, C. A., and Deiveekasundaram, M. 2010. Effect of root inoculation with plant growth promoting rhizobacteria (PGPR) on plant growth, alkaloid content and nutrient control of Catharanthus roseus (L.) G. Don. Natura Croatica, 19(1), 205.
22. Karunananda, D. P. and Peiris S. E. 2011. Evaluation of public acceptability and longevity of forced bloomed poinsettia (Euphorbia pulcherrima) pots in indoor decorations. Trop. Agric. Res., 23(1): 21 – 29.
23. Khandan-Mirkohi, A., Schenk, M. K., and Fereshtian, M. 2015. Study on Phosphorus Supply Management of Poinsettia Grown in Peat-Based Substrate. J. Agr. Sci. Tech., 17(1): 179-188.
24. Kofranek, A. M., Byrne T. G., Sciaroni R. H. and Lunt O. R. 1963. Slow release fertilizers for poinsettia pot plants. California Agriculture (Berkeley) September, 14-15.
25. Kotan, R., Çakir A., Ozer H., Kordali Ş., Çakmakci R., Dadasoglu F., Dikbaş N., Aydin T. and Kazaz C. 2014. Antibacterial effects of Origanum onites against phytopathogenicbacteria: Possible use of the extracts from protection of diseasecaused by some phytopathogenic bacteria. Sci. Hort., 172: 210–220. https://doi.org/10.1016/j.scienta.2014.03.016
26. Lai, W. A., Rekha P. D., Arun A. B. and Young C. C. 2008. Effect of mineral fertilizer, pig manure, and Azospirillum rugosum on growth and nutrient contents of Lactuca sativa L. Biol. Fertil. Soils, 45: 155–164. https://doi.org/10.1007/s00374-008-0313-3
27. Lamont, J. R., and Elliott, G. C. 2016. Anaerobically digested dairy fiber in soilless potting media for poinsettias. Int. J. Recycl. Org. Waste Agric., 5(2): 173-177.
28. Larson, R. A, Love J. W. and Strider D. L. 1978. Commercial poinsettia production. North Carolina Agricultural Extension Service, AG-108.
29. Lawrence, W. J. C., Price J. R., Robinson G. M. and Robinson R. 1939. The distribution of anthocyanins in flowers, fruits and leaves. Proceedings of the Royal Society (London) (Philosophical Transactions) Series B, 230(567): 149-178. July 1939-Jan. https://royalsocietypublishing.org/doi/pdf/10.1098/rstb.1939.0006
30. Lineberger, D. 2018. The-texas-poinsettia-producers-guide/selecting-a-growing-medium. Aggie Horticulture. https://aggie-horticulture.tamu.edu/ornamental/the-texas-poinsettia-producers-guide/selecting-a-growing-medium/ [2018-11-15].
31. Madeira, A. C., Ferreira A., de Varennes A. and Vieira M. I. 2003. SPAD meter versus tristimulus colorimeter to estimate chlorophyll content and leaf color in sweet pepper. Commun. Soil Sci. Plant Anal., 34(17-18): 2461-2470. https://doi.org/10.1081/CSS-120024779
32. Marschner, H. 2008. Mineral nutrition of higher plants. Digital Print. Academic Press., pp.889.
33. Medina-Ortega, K. J. 2011. Poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch: Euphorbiacea) resistance mechanisms against the silverleaf whitefly, Bemisia tabaci (Gennadius)(Hemiptera: Aleyrodidae) biotype B (Doctoral dissertation, The Ohio State University), Entomology, 149.
34. Mertens, D. 2005. AOAC Official Method 975.03. Metal in Plants and Pet Foods. Official Methods of Analysis, 18th edn. Horwitz, W., and G.W. Latimer, (Eds). Chapter 3, pp 3-4.
35. Mikkelsen, R. 2005. Tomato flavor and plant nutrition: a brief review. Better Crops with Plant Food, 89(2): 14-15.
36. Orhan, E., Eşitken A., Ercişli S., Turan M. and Şahin F. 2006. Effects of plant growth promoting rhizobacteria (PGPR) on yield growth and nutrient contents in organically growing raspberry. Sci. Hort., 111: 38-43. https://doi.org/10.1016/j.scienta.2006.09.002
37. Parlakova Karagöz, F., Dursun A., Kotan R., Ekinci M., Yildirim E. and Mohammadi P. 2016. Assessment of the effects of some bacterial isolates and hormones on corm formation and some plant properties in saffron (Crocus sativus L.). J. Agr.Sci., 22(4): 500-511.
38. Pritts, M. and Handley D. 1998. Strawberry production guide for the Northeast, Midwest and eastern Canada. Northeast Regional Agr. Eng. Serv.–88, Ithaca, N.Y.
39. Qasim, M., Younis A., Zahir Z. A., Riaz A., Raza H. and Tariq U. 2014. Microbial inoculation increases the nutrient uptake efficiency for quality production of Gladiolus grandifloras. Pak. J. Agr. Sci., 51(4): 875-880.
40. Saharan, B. S. and Nehra V. 2011. Plant growth promoting rhizobacteria: a critical review. Life Sciences and Medicine Research, 21: 1–30.
41. Seema, K., Mehtaand K. and Singh N. 2018. Studies on the effect of plant growth promoting rhizobacteria (PGPR) on growth, physiological parameters, yield and fruit quality of strawberry cv. chandler. J. Pharmacogn. Phytochem., 7(2): 383-387.
42. Serek, M. and Reid M. 2000. Ethylene and postharvest performance of potted kalanchoe. Postharvest Biol. Tec., 18: 43–48. https://doi.org/10.1016/S0925-5214(99)00055-1
43. Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., and Gobi, T. A. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus, 2(1): 587.
44. Shen, J., Li R., Zhang F., Fan J., Tang C. and Rengel Z. 2004. Crop yields, soil fertility and phosphorus fractions in response to long-term fertilization under rice monoculture system on a calcareous soil. Field Crops Res., 86: 225–238. https://doi.org/10.1016/j.fcr.2003.08.013
45. Slatnar, A., Mikulic-Petkovsek, M., Veberic, R., Stampar, F., and Schmitzer, V. 2013. Anthocyanin and chlorophyll content during poinsettia bract development. Sci. Hort., 150: 142-145.
46. Sundra, B., Natarajam V. and Hari K. 2002. Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crops Res, 77: 43–49. https://doi.org/10.1016/S0378-4290(02)00048-5
47. Tanaka, Y., Sasaki, N., and Ohmiya, A. 2008. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J., 54(4): 733-749.
48. Zulueta-Rodriguez, R., Cordoba-Matson M. V., Hernandez-Montiel L. G., Murillo-Amador B., Rueda-Puente E. and Lara L. 2014. Effect of Pseudomonas putida on growth and anthocyanin pigment in two Poinsettia (Euphorbia pulcherrima) cultivars. Sci. World J., Volume 2014, Article ID 810192, 6 pages. http://dx.doi.org/10.1155/2014/810192