Curcumin Microparticles Produced by Electrospraying Technique with Whey Protein Isolate and β-Cyclodextrin Complex

Document Type : Original Research

Authors
1 Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, P. O. Box: 14115-336, Tehran, Islamic Republic of Iran.
2 Department of Applied Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Islamic Republic of Iran.
Abstract
In this research, the potential of the electrospraying technique was used for encapsulation of curcumin in natural polymers such as Whey Protein Isolate (WPI) and mixture of WPI/β-CycloDextrin (β-CD). The encapsulated particles were physicochemically characterized and curcumin release profile was evaluated. At WPI concentration of 25%, more uniform particles were formed and most of them were smaller than 0.7 µm in diameter. The encapsulation efficiency of curcumin in WPI and WPI/β-CD solutions was determined as 45.4% and 53.6%, respectively. Differential Scanning Calorimetry (DSC) and ThermoGravimetric Analysis (TGA) of the obtained encapsulated curcumin revealed that WPI and WPI/β-CD polymers could not increase thermal stability of curcumin. Encapsulated curcumin had a better stability than pure curcumin at acidic and alkaline conditions, and the release of curcumin after 7 hours was lower than 40% with the sustained mode in buffer solution conditions (pH= 7.4).

Keywords

Subjects


Abarca, R. L., Rodriguez, F. J., Guarda, A., Galotto, M. J., & Bruna, J. E. J. F. c. (2016). Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component. 196, 968-975.
Aditya, N., Yang, H., Kim, S., & Ko, S. (2015). Fabrication of amorphous curcumin nanosuspensions using β-lactoglobulin to enhance solubility, stability, and bioavailability. Colloids and Surfaces B: Biointerfaces, 127, 114-121.
Belitz, H. D., Grosch, W., & Schieberle, P. (2008). Food Chemistry: Springer Berlin Heidelberg.
Blanco-Padilla, A., López-Rubio, A., Loarca-Piña, G., Gómez-Mascaraque, L. G., & Mendoza, S. (2015). Characterization, release and antioxidant activity of curcumin-loaded amaranth-pullulan electrospun fibers. LWT - Food Science and Technology, 63(2), 1137-1144. doi:http://dx.doi.org/10.1016/j.lwt.2015.03.081
Chiang, S.-H., & Chang, C.-Y. (2005). Antioxidant properties of caseins and whey proteins from colostrums. Journal of food and drug analysis, 13(1).
El-Sherbiny, I. M., & Smyth, H. D. (2011). Controlled release pulmonary administration of curcumin using swellable biocompatible microparticles. Molecular pharmaceutics, 9(2), 269-280.
Fathi, M., Martín, Á., & McClements, D. J. (2014). Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends in food science & technology, 39(1), 18-39.
Fathi, M., Mozafari, M. R., & Mohebbi, M. (2012). Nanoencapsulation of food ingredients using lipid based delivery systems. Trends in Food Science & Technology, 23(1), 13-27. doi:http://dx.doi.org/10.1016/j.tifs.2011.08.003
Gaidamauskas, E., Norkus, E., Butkus, E., Crans, D. C., & Grincienė, G. (2009). Deprotonation of β-cyclodextrin in alkaline solutions. Carbohydrate Research, 344(2), 250-254. doi:https://doi.org/10.1016/j.carres.2008.10.025
Garti, N., & McClements, D. J. (2012). Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals: Elsevier Science.
Giordano, F., Novak, C., & Moyano, J. R. (2001). Thermal analysis of cyclodextrins and their inclusion compounds. Thermochimica Acta, 380(2), 123-151. doi:http://dx.doi.org/10.1016/S0040-6031(01)00665-7
Gómez-Estaca, J., Gavara, R., & Hernández-Muñoz, P. (2015). Encapsulation of curcumin in electrosprayed gelatin microspheres enhances its bioaccessibility and widens its uses in food applications. Innovative Food Science & Emerging Technologies, 29, 302-307. doi:http://dx.doi.org/10.1016/j.ifset.2015.03.004
Gunasekaran, S., Ko, S., & Xiao, L. (2007). Use of whey proteins for encapsulation and controlled delivery applications. Journal of Food Engineering, 83(1), 31-40.
Kamau, S. M., & Lu, R.-R. (2011). The effect of enzymes and hydrolysis conditions on degree of hydrolysis and DPPH radical scavenging activity of whey protein hydrolysates. Curr. Res. Dairy Sci, 3, 25-35.
Kayaci, F., & Uyar, T. (2012). Electrospun zein nanofibers incorporating cyclodextrins. Carbohydrate Polymers, 90(1), 558-568. doi:http://dx.doi.org/10.1016/j.carbpol.2012.05.078
Kerasioti, E., Stagos, D., Priftis, A., Aivazidis, S., Tsatsakis, A. M., Hayes, A. W., & Kouretas, D. (2014). Antioxidant effects of whey protein on muscle C2C12 cells. Food chemistry, 155(Supplement C), 271-278. doi:https://doi.org/10.1016/j.foodchem.2014.01.066
Kong, J., & Yu, S. (2007). Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta biochimica et biophysica Sinica, 39(8), 549-559.
Lee, W.-H., Loo, C.-Y., Bebawy, M., Luk, F., Mason, R. S., & Rohanizadeh, R. (2013). Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Current neuropharmacology, 11(4), 338-378.
Li, J., Shin, G. H., Lee, I. W., Chen, X., & Park, H. J. (2016). Soluble starch formulated nanocomposite increases water solubility and stability of curcumin. Food Hydrocolloids, 56, 41-49.
Li, M., Cui, J., Ngadi, M. O., & Ma, Y. J. F. c. (2015). Absorption mechanism of whey-protein-delivered curcumin using Caco-2 cell monolayers. 180, 48-54.
Liu, W., Chen, X. D., Cheng, Z., & Selomulya, C. (2016a). On enhancing the solubility of curcumin by microencapsulation in whey protein isolate via spray drying. Journal of Food Engineering, 169, 189-195.
Liu, W., Chen, X. D., Cheng, Z., & Selomulya, C. J. J. o. F. E. (2016b). On enhancing the solubility of curcumin by microencapsulation in whey protein isolate via spray drying. 169, 189-195.
López-Rubio, A., & Lagaron, J. M. (2012). Whey protein capsules obtained through electrospraying for the encapsulation of bioactives. Innovative Food Science & Emerging Technologies, 13, 200-206.
López-Rubio, A., Sanchez, E., Wilkanowicz, S., Sanz, Y., & Lagaron, J. M. (2012). Electrospinning as a useful technique for the encapsulation of living bifidobacteria in food hydrocolloids. Food Hydrocolloids, 28(1), 159-167.
Mangolim, C. S., Moriwaki, C., Nogueira, A. C., Sato, F., Baesso, M. L., Neto, A. M., & Matioli, G. (2014). Curcumin–β-cyclodextrin inclusion complex: Stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food chemistry, 153, 361-370.
McClements, D. J. (2014). Nanoparticle- and Microparticle-based Delivery Systems: Encapsulation, Protection and Release of Active Compounds: Taylor & Francis.
Noorafshan, A., & Ashkani-Esfahani, S. J. C. p. d. (2013). A review of therapeutic effects of curcumin. 19(11), 2032-2046.
O'Loughlin, I. B., Kelly, P. M., Murray, B. A., FitzGerald, R. J., & Brodkorb, A. (2015). Concentrated whey protein ingredients: A Fourier transformed infrared spectroscopy investigation of thermally induced denaturation. International journal of dairy technology, 68(3), 349-356.
Paramera, E. I., Konteles, S. J., & Karathanos, V. T. (2011). Stability and release properties of curcumin encapsulated in Saccharomyces cerevisiae, β-cyclodextrin and modified starch. Food chemistry, 125(3), 913-922.
Pinto, L. M., Fraceto, L. F., Santana, M. H. A., Pertinhez, T. A., Junior, S. O., de Paula, E. J. J. o. p., & analysis, b. (2005). Physico-chemical characterization of benzocaine-β-cyclodextrin inclusion complexes. 39(5), 956-963.
Sullivan, S. T., Tang, C., Kennedy, A., Talwar, S., & Khan, S. A. (2014). Electrospinning and heat treatment of whey protein nanofibers. Food Hydrocolloids, 35, 36-50.
Sun, X.-Z., Williams, G. R., Hou, X.-X., & Zhu, L.-M. (2013). Electrospun curcumin-loaded fibers with potential biomedical applications. Carbohydrate Polymers, 94(1), 147-153. doi:http://dx.doi.org/10.1016/j.carbpol.2012.12.064
Zhong, J., Mohan, S. D., Bell, A., Terry, A., Mitchell, G. R., & Davis, F. J. (2018). Electrospinning of food-grade nanofibres from whey protein. International Journal of Biological Macromolecules, 113, 764-773. doi:https://doi.org/10.1016/j.ijbiomac.2018.02.113
Zhu, G., Xiao, Z., Zhou, R., & Zhu, Y. J. C. p. (2014). Study of production and pyrolysis characteristics of sweet orange flavor-β-cyclodextrin inclusion complex. 105, 75-80.