Abarca, R. L., Rodriguez, F. J., Guarda, A., Galotto, M. J., & Bruna, J. E. J. F. c. (2016). Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component. 196, 968-975.
Aditya, N., Yang, H., Kim, S., & Ko, S. (2015). Fabrication of amorphous curcumin nanosuspensions using β-lactoglobulin to enhance solubility, stability, and bioavailability. Colloids and Surfaces B: Biointerfaces, 127, 114-121.
Belitz, H. D., Grosch, W., & Schieberle, P. (2008). Food Chemistry: Springer Berlin Heidelberg.
Blanco-Padilla, A., López-Rubio, A., Loarca-Piña, G., Gómez-Mascaraque, L. G., & Mendoza, S. (2015). Characterization, release and antioxidant activity of curcumin-loaded amaranth-pullulan electrospun fibers. LWT - Food Science and Technology, 63(2), 1137-1144. doi:http://dx.doi.org/10.1016/j.lwt.2015.03.081
Chiang, S.-H., & Chang, C.-Y. (2005). Antioxidant properties of caseins and whey proteins from colostrums. Journal of food and drug analysis, 13(1).
El-Sherbiny, I. M., & Smyth, H. D. (2011). Controlled release pulmonary administration of curcumin using swellable biocompatible microparticles. Molecular pharmaceutics, 9(2), 269-280.
Fathi, M., Martín, Á., & McClements, D. J. (2014). Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends in food science & technology, 39(1), 18-39.
Fathi, M., Mozafari, M. R., & Mohebbi, M. (2012). Nanoencapsulation of food ingredients using lipid based delivery systems. Trends in Food Science & Technology, 23(1), 13-27. doi:http://dx.doi.org/10.1016/j.tifs.2011.08.003
Gaidamauskas, E., Norkus, E., Butkus, E., Crans, D. C., & Grincienė, G. (2009). Deprotonation of β-cyclodextrin in alkaline solutions. Carbohydrate Research, 344(2), 250-254. doi:https://doi.org/10.1016/j.carres.2008.10.025
Garti, N., & McClements, D. J. (2012). Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals: Elsevier Science.
Giordano, F., Novak, C., & Moyano, J. R. (2001). Thermal analysis of cyclodextrins and their inclusion compounds. Thermochimica Acta, 380(2), 123-151. doi:http://dx.doi.org/10.1016/S0040-6031(01)00665-7
Gómez-Estaca, J., Gavara, R., & Hernández-Muñoz, P. (2015). Encapsulation of curcumin in electrosprayed gelatin microspheres enhances its bioaccessibility and widens its uses in food applications. Innovative Food Science & Emerging Technologies, 29, 302-307. doi:http://dx.doi.org/10.1016/j.ifset.2015.03.004
Gunasekaran, S., Ko, S., & Xiao, L. (2007). Use of whey proteins for encapsulation and controlled delivery applications. Journal of Food Engineering, 83(1), 31-40.
Kamau, S. M., & Lu, R.-R. (2011). The effect of enzymes and hydrolysis conditions on degree of hydrolysis and DPPH radical scavenging activity of whey protein hydrolysates. Curr. Res. Dairy Sci, 3, 25-35.
Kayaci, F., & Uyar, T. (2012). Electrospun zein nanofibers incorporating cyclodextrins. Carbohydrate Polymers, 90(1), 558-568. doi:http://dx.doi.org/10.1016/j.carbpol.2012.05.078
Kerasioti, E., Stagos, D., Priftis, A., Aivazidis, S., Tsatsakis, A. M., Hayes, A. W., & Kouretas, D. (2014). Antioxidant effects of whey protein on muscle C2C12 cells. Food chemistry, 155(Supplement C), 271-278. doi:https://doi.org/10.1016/j.foodchem.2014.01.066
Kong, J., & Yu, S. (2007). Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta biochimica et biophysica Sinica, 39(8), 549-559.
Lee, W.-H., Loo, C.-Y., Bebawy, M., Luk, F., Mason, R. S., & Rohanizadeh, R. (2013). Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Current neuropharmacology, 11(4), 338-378.
Li, J., Shin, G. H., Lee, I. W., Chen, X., & Park, H. J. (2016). Soluble starch formulated nanocomposite increases water solubility and stability of curcumin. Food Hydrocolloids, 56, 41-49.
Li, M., Cui, J., Ngadi, M. O., & Ma, Y. J. F. c. (2015). Absorption mechanism of whey-protein-delivered curcumin using Caco-2 cell monolayers. 180, 48-54.
Liu, W., Chen, X. D., Cheng, Z., & Selomulya, C. (2016a). On enhancing the solubility of curcumin by microencapsulation in whey protein isolate via spray drying. Journal of Food Engineering, 169, 189-195.
Liu, W., Chen, X. D., Cheng, Z., & Selomulya, C. J. J. o. F. E. (2016b). On enhancing the solubility of curcumin by microencapsulation in whey protein isolate via spray drying. 169, 189-195.
López-Rubio, A., & Lagaron, J. M. (2012). Whey protein capsules obtained through electrospraying for the encapsulation of bioactives. Innovative Food Science & Emerging Technologies, 13, 200-206.
López-Rubio, A., Sanchez, E., Wilkanowicz, S., Sanz, Y., & Lagaron, J. M. (2012). Electrospinning as a useful technique for the encapsulation of living bifidobacteria in food hydrocolloids. Food Hydrocolloids, 28(1), 159-167.
Mangolim, C. S., Moriwaki, C., Nogueira, A. C., Sato, F., Baesso, M. L., Neto, A. M., & Matioli, G. (2014). Curcumin–β-cyclodextrin inclusion complex: Stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food chemistry, 153, 361-370.
McClements, D. J. (2014). Nanoparticle- and Microparticle-based Delivery Systems: Encapsulation, Protection and Release of Active Compounds: Taylor & Francis.
Noorafshan, A., & Ashkani-Esfahani, S. J. C. p. d. (2013). A review of therapeutic effects of curcumin. 19(11), 2032-2046.
O'Loughlin, I. B., Kelly, P. M., Murray, B. A., FitzGerald, R. J., & Brodkorb, A. (2015). Concentrated whey protein ingredients: A Fourier transformed infrared spectroscopy investigation of thermally induced denaturation. International journal of dairy technology, 68(3), 349-356.
Paramera, E. I., Konteles, S. J., & Karathanos, V. T. (2011). Stability and release properties of curcumin encapsulated in Saccharomyces cerevisiae, β-cyclodextrin and modified starch. Food chemistry, 125(3), 913-922.
Pinto, L. M., Fraceto, L. F., Santana, M. H. A., Pertinhez, T. A., Junior, S. O., de Paula, E. J. J. o. p., & analysis, b. (2005). Physico-chemical characterization of benzocaine-β-cyclodextrin inclusion complexes. 39(5), 956-963.
Sullivan, S. T., Tang, C., Kennedy, A., Talwar, S., & Khan, S. A. (2014). Electrospinning and heat treatment of whey protein nanofibers. Food Hydrocolloids, 35, 36-50.
Sun, X.-Z., Williams, G. R., Hou, X.-X., & Zhu, L.-M. (2013). Electrospun curcumin-loaded fibers with potential biomedical applications. Carbohydrate Polymers, 94(1), 147-153. doi:http://dx.doi.org/10.1016/j.carbpol.2012.12.064
Zhong, J., Mohan, S. D., Bell, A., Terry, A., Mitchell, G. R., & Davis, F. J. (2018). Electrospinning of food-grade nanofibres from whey protein. International Journal of Biological Macromolecules, 113, 764-773. doi:https://doi.org/10.1016/j.ijbiomac.2018.02.113
Zhu, G., Xiao, Z., Zhou, R., & Zhu, Y. J. C. p. (2014). Study of production and pyrolysis characteristics of sweet orange flavor-β-cyclodextrin inclusion complex. 105, 75-80.