In silico Discovery of Conserved and Novel miRNAs from Expressed Sequence Tags in the Chicken (Gallus gallus)

Authors
1 Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Pakdasht, Tehran, Islamic Republic of Iran.
2 Department of Agriculture, Iranian Research Organization for Science and Technology (IROST), Islamic Republic of Iran.
Abstract
MicroRNAs (miRNAs) and other types of small non-coding RNAs play a crucial role in the regulation of gene expression in eukaryotes either by post-transcriptional degradation or attenuating translation of messenger RNAs. In the case of the chicken (Gallus gallus), knowledge regarding miRNAs is still limited. In the present study, a computational approach was employed to screen miRNAs from the Expressed Sequence Tags (ESTs) of the chicken. A total of 21,298 known miRNAs belonging to 114 metazoan species were searched for homology against more than 192,020 EST sequences of the chicken. Consequently, 60 potential miRNA candidates were identified according to a range of filtering criteria. As a result, four novel miRNAs were found among the identified miRNAs including gga-miR-92a, gga-miR-2438, gga-miR-2970-5p, and gga-miR-2970-3p belonging to miR-92, miR-2438 and miR-2970 families. To predict their targeted genes, a BLAST search was done against the chicken 3' UTR mRNA database. As a result, 678, 422, 171 and 110 targets were determined for gga-miR-92a, gga-miR-2438, gga-miR-2970-5p, and gga-miR-2970-3p, respectively. Most of the predicted target genes participate in multiple biological processes, including immune system, regulation of cAMP biosynthesis, regulation of cyclase activity and regulation of lyase activity. Finally, a phylogenetic analysis of gga-miR-2970 and gga-miR-92a sequences revealed a close relationship between the chicken and Taeniopygia guttata, while gga-miR-2438 shares maximum percentage sequence similarity with bta-miR-2438 in Bos taurus. The present study is the first attempt to screen microRNAs from ESTs originating from the chicken leading to the identification of novel miRNAs.

Keywords

Subjects


1. Baloch, I. A. and Din, M. 2014. Bioinformatic Hunting of MicroRNAs. Pure Appl. Biol., 3.
2. Bartel, B. and Bartel, D. P. 2003. MicroRNAs: At the Root of Plant Development? Plant Physiol.,132: 709-717.
3. Bartel, D. P. 2004. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell, 116: 281-297.
4. Bartel, D. P. 2009. MicroRNAs: Target Recognition and Regulatory Functions. Cell, 136: 215-233.
5. Bartel, D.P. and Chen, C.-Z. 2004. Micromanagers of Gene Expression: The Potentially Widespread Influence of Metazoan microRNAs. Nat. Rev. Genet., 5: 396-400.
6. Bentwich, I. 2005. Prediction and Validation of microRNAs and Their Targets. FEBS Lett., 579: 5904-5910.
7. Bonnet, E., Wuyts, J., Rouzé, P. and Van de Peer, Y. 2004. Evidence that microRNA Precursors, Unlike Other Non-Coding RNAs, Have Lower Folding Free Energies than Random Sequences. Bioinformatics, 20: 2911-2917.
8. Bradley, J.E., Ramirez, G. and Hagood, J. S. 2009. Roles and Regulation of Thy‐1, a Context‐Dependent Modulator of Cell Phenotype. Biofactors, 35: 258-265.
9. Brandeis, M. et al. Please put the names of all authors. 1998. Cyclin B2-Null Mice Develop Normally and Are Fertile whereas Cyclin B1-Null Mice Die in Utero. Proceed. Nat. Acad. Sci., 95: 4344-4349.
10. Calin, G. A. Ferracin M., Cimmino A., Di Leva, G., Shimizu, M., Wojcik, S. E., Iorio, M. V., Visone, R., Sever, N. I., Fabbri, M., Iuliano, R. 2005. A MicroRNA Signature Associated with Prognosis and Progression in Chronic Lymphocytic Leukemia. New England J. Med., 353: 1793-1801.
11. Carrington, J. C. and Ambros, V. 2003. Role of MicroRNAs in Plant and Animal Development. Science, 301: 336-338.
12. Chang, S., Johnston, R. J. Jr., Frokjaer-Jensen, C., Lockery, S. and Hobert, O. 2004. MicroRNAs Act Sequentially and Asymmetrically to Control Chemosensory Laterality in the Nematode. Nature, 430: 785-789.
13. Cooper, M. D., Peterson, R. D., South, M. A. and Good, R. A. 1966. The Functions of the Thymus System and the Bursa System in the Chicken. J. Exp. Med., 123: 75-102.
14. Da, W., Huang, B. T. S. and Lempicki, R. A. 2008. Systematic and Integrative Analysis of Large Gene Lists Using DAVID Bioinformatics Resources. Nat. Protoc., 4: 44-57.
15. Dezulian, T., Palatnik, J. F., Huson, D. and Weigel, D. 2005. Conservation and Divergence of MicroRNA Families in Plants. Genome Biol., 6: P13.
16. Etheridge, A., Lee, I., Hood, L., Galas, D. and Wang, K. 2011. Extracellular MicroRNA: A New Source of Biomarkers. Mutat. Res., 717: 85-90.
17. Glazov, E. A. et al. 2008. A MicroRNA Catalog of the Developing Chicken Embryo Identified by a Deep Sequencing Approach. Genome Res., 18: 957-964.
18. Gong, P., Xie, F., Zhang, B. and Perkins, E. J. 2010. In Silico Identification of Conserved MicroRNAs and Their Target Transcripts from Expressed Sequence Tags of Three Earthworm Species. Comput. Biol. Chem., 34: 313-319.
19. Hatfield, S. et al. 2005. Stem Cell Division Is Regulated by the MicroRNA Pathway. Nature, 435: 974-978.
20. Hicks, J. A., Trakooljul, N. and Liu, H. -C. 2010. Discovery of Chicken MicroRNAs Associated with Lipogenesis and Cell Proliferation. Physiol. Genomics., 41: 185-193.
21. Huang, X. and Madan, A. 1999. CAP3: A DNA Sequence Assembly Program. Genome Res., 9: 868-877.
22. Hunter, C. and Poethig, R. S. 2003. miSSING LINKS: miRNAs and Plant Development. Curr. Opin. Genet. Dev., 13: 372-378.
23. Johnston, R. J. and Hobert, O. 2003. A MicroRNA Controlling Left/Right Neuronal Asymmetry in Caenorhabditis elegans. Nature, 426: 845-849.
24. Kent, W. J. 2002. BLAT: The BLAST-Like Alignment Tool. Genome Res., 12: 656-664.
25. Lee, R. C., Feinbaum, R. L. and Ambros V. 1993. The C. Elegans Heterochronic Gene Lin-4 Encodes Small RNAs with Antisense Complementarity to Kin-14. Cell, 75: 843-854.
26. Lee, Y. et al. 2003. The Nuclear RNase III Drosha Initiates MicroRNA Processing. Nature, 425: 415-419.
27. Lee, Y. et al. 2004. MicroRNA Genes Are Transcribed by RNA Polymerase II. EMBO J., 23: 4051-4060.
28. Lee, Y. S. and Dutta, A. 2007. The Tumor Suppressor MicroRNA Let-7 Represses the HMGA2 Oncogene. Genes Dev., 21: 1025-1030.
29. Lewis, B. P., Burge, C. B. and Bartel, D. P. 2005. Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes Are MicroRNA Targets. Cell, 120: 15-20.
30. Li, W. and Godzik, A. 2006. Cd-Hit: A Fast Program for Clustering and Comparing Large Sets of Protein or Nucleotide Sequences. Bioinformatics, 22: 1658-1659.
31. Loong, S. N. K. and Mishra, S. K. 2007. Unique Folding of Precursor MicroRNAs: Quantitative Evidence and Implications for de Novo Identification. RNA, 13: 170-187.
32. Panda, D., Dehury, B., Sahu, J., Barooah, M., Sen, P., Modi, M. K., 2014. Computational Identification and Characterization of Conserved miRNAs and Their Target Genes in Garlic (Allium sativum L.) Expressed Sequence Tags. Gene, 537: 333-342.
33. Pani, A. and Mahapatra, R. K. 2013. Computational Identification of MicroRNAs and Their Targets in Catharanthus roseus Expressed Sequence Tags. Genom. Data, 1: 2-6.
34. Poy, M. N., Eliasson, L., Krutzfeldt, J., Kuwajima, S., Ma, X., Macdonald, P. E., Pfeffer, S., Tuschl, T., Rajewsky, N., Rorsman, P., Stoffel, M., 2004. A Pancreatic Islet-Specific MicroRNA Regulates Insulin Secretion. Nature, 432: 226-230.
35. Prabu, G. and Mandal, A. 2010. Computational Identification of miRNAs and Their Target Genes from Expressed Sequence Tags of Tea (Camellia sinensis). Genom. Proteom. Bioinforma., 8: 113-121.
36. Qiu, Y., Shen, Y., Li, X., Ding, C. and Ma, Z. 2008. Molecular Cloning and Functional Characterization of a Novel Isoform of Chicken Myeloid Differentiation Factor 88 (MyD88). Dev. Comp. Immunol., 32: 1522-1530.
37. Sadeghi, B. Nassiri, M., Masoudi-Nejad, A., Tahmoorespour, M., Dehghani, H. and Ahmadi, H., 2013. Computational Analyses for Identification Novel MicroRNAs from Cattle and Sheep. J. Cell Mol. Res., 4: 62-67.
38. Sheng, X. Song, X., Yu, Y., Niu, L., Li, S., Li, H., Wei, C., Liu, T., Zhang, L. and Du, L., 2011. Characterization of MicroRNAs from Sheep (Ovis aries) Using Computational and Experimental Analyses. Mol. Biol. Rep., 38: 3161-3171.
39. Tamura, K. Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S., 2011. MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol. Biol. Evol., 28: 2731-2739.
40. Tavazoie, S. F. Alarcón, C., Oskarsson, T., Padua, D., Wang, Q., Bos, P. D., Gerald, W. L. and Massagué, J., 2008. Endogenous Human MicroRNAs that Suppress Breast Cancer Metastasis. Nature, 451: 147-152.
41. TÎrziu, E. and Şereş, M. 2010. Particularities of the Avian Immune System. LUCR {RI ST» INIFICE MEDICIN {VETERINAR {VOL. XLIII (1), 2010 TIMISOARA Immunology and Disease Prevention in Poultry.
42. Vasudevan, S., Tong, Y. and Steitz, J. A. 2007. Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation. Science, 318: 1931-1934.
43. Wang, X., Z. Gu and H. Jiang. 2013. MicroRNAs in Farm Animals. Animal, 7: 1567-1575.
44. Wang, X., Yu, J., Zhang, Y., Gong, D. and Gu, Z. 2012. Identification and Characterization of MicroRNA from Chicken Adipose Tissue and Skeletal Muscle. Poul. Sci., 91: 139-149.
45. Wang, Y. Brahmakshatriya, V., Zhu, H., Lupiani, B., Reddy, S. M., Yoon, B. J., Gunaratne, P. H., Kim, J. H., Chen, R., Wang, J. and Zhou, H., 2009. Identification of Differentially Expressed miRNAs in Chicken Lung and Trachea with Avian Influenza Virus Infection by a Deep Sequencing Approach. BMC Genom., 10: 512.
46. Weber, M. J. 2005. New Human and Mouse MicroRNA Genes Found by Homology Search. FEBS J., 272: 59-73.
47. Wightman, B., Ha, I., and Ruvkun, G. 1993. Posttranscriptional Regulation of the Heterochronic Gene Lin‐14 by Lin‐4 Mediates Temporal Pattern Formation in C. Elegans. Cell 75: 855–862.
48. Xu, H., Wang, X., Du, Z. and Li, N. 2006. Identification of MicroRNAs from Different Tissues of Chicken Embryo and Adult Chicken. FEBS Lett., 580: 3610-3616.
49. Xu, P., Vernooy, S. Y., Guo, M. and Hay, B. A. 2003. The Drosophila MicroRNA Mir-14 Suppresses Cell Death and Is Required for Normal Fat Metabolism. Curr. Biol., 13: 790-795.
50. Yao, J., Wang, Y., Wang, W., Wang, N. and Li, H. 2011. Solexa Sequencing Analysis of Chicken Pre-Adipocyte MicroRNAs. Biosci. Biotechnol. Biochem., 75: 54-61.
51. Yousef, M., Showe, L. and Showe, M. 2009. A Study of MicroRNAs in Silico and in Vivo: Bioinformatics Approaches to MicroRNA Discovery and Target Identification. FEBS J., 276: 2150-2156.
52. Zhang, B., Pan, X., Cox, S., Cobb, G. and Anderson, T. 2006. Evidence that miRNAs Are Different from Other RNAs. Cell. Mol. Life Sci. CMLS, 63: 246-254.
53. Zhang, B., X. Pan and E. J. Stellwag. 2008. Identification of soybean microRNAs and their targets. Planta 229: 161-182.
54. Zhao, T. Li, G., Mi, S., Li, S., Hannon, G.J., Wang, X. J. and Qi, Y., 2007. A Complex System of Small RNAs in the Unicellular Green Alga Chlamydomonas reinhardtii. Genes Dev., 21: 1190-1203.
55. Zhou, B. and Liu, H. L. 2010. Computational Identification of New Porcine MicroRNAs and Their Targets. Anim. Sci. J., 81: 290-296.
56. Zuker, M. 2003. Mfold Web Server for Nucleic Acid Folding and Hybridization Prediction. Nucl. Acids Res., 31: 3406-3415.