Effects of Exogenous Selenium in Different Concentrations and Forms on Selenium Accumulation and Growth of Spinach (Spinacia oleracea L.)

Document Type : Original Research

Authors
1 Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
2 Jožef Stefan Institute, Ljubljana, Slovenia.
Abstract
The objectives of this study were to determine if Selenium (Se) in the forms of Se (IV) and Se (VI) interact during uptake and assimilation by spinach plants (Spinacia oleracea L.), when they are applied together. That might affect selected physiological and morphological characteristics, and crop yield. Plants were foliar sprayed with different concentrations of Se as selenite and selenate, separately (each at the rate of 5, 10, 15 mg Se L-1), and simultaneously with selenite plus selenate (each at the rate of 5 mg Se L-1). Se accumulation in the spinach leaves was monitored, along with selected physiological and morphological characteristics. These foliar Se treatments had little or no effects on crop yield, content of photosynthetic pigments and UVA and UVB absorbing compounds, respiratory potential and plant biomass, and potential efficiency of photosystem II. This demonstrated the good conditions of the spinach plants under these foliar Se treatments. The spinach plants readily accumulated both forms of Se into the leaves. Direct comparison of their combined application (5+5 mg L-1) with their individual applications (10 mg L-1) showed that in the combined application, the plants accumulated Se more than in selenite alone treatment, but less Se than in the selenate alone treatment. Foliar spraying with all tested concentrations of selenite, selenate, or their combination ensured that spinach leaves were safe for use in human nutrition. According to our results, exogenous treatment with selenate in concentration of 15 mg L-1 was the most efficient treatment for production of Se enriched spinach.

Keywords

Subjects


Abd El-Moneim, A.M., Nakkoul, H., Masri, S. and Ryan, J. 2010. Implications of Zinc Fertilization for Ameliorating Toxicity (Neurotoxin) in Grasspea (Lathyrus sativus). J. Agr. Sci. Tech., 12: 69-78.
Caldwell, M.M. 1968. Solar ultraviolet radiation as an ecological factor for Alpine plants. Ecol. monogr., 38: 243-268.
Cartes, P., Gianfreda, L., Paredes, C. and Mora, M.L. 2011. Selenium uptake and its antioxidant role in ryegrass cultivars as affected by selenite seed pelletization. J. Soil Sci. Plant. Nutr., 11: 1-14.
Chomchan, R., Siripongvutikorn, S., Puttarak, P. and Rattanapon, R. 2017. Influence of selenium bio-fortification on nutritional compositions, bioactive compounds content and anti-oxidative properties of young ricegrass (Oryza sativa L.). Funct. Foods Health Dis., 7: 195-209.
Combs, G.F. and Jr. Combs, S.B. 1986. The role of selenium in nutrition. Academic Press, Orlando, FL.
Ellis, D.R. and Salt, D.E. 2003. Plants, selenium and human health. Curr. Opin. Plant. Biol., 6: 273-279.
Elrashidi, M.A., Adriano, D.C., Workman, S.M. and Lindsay, W.L. 1987. Chemical-equilibria of selenium in soils - a theoretical development. Soil Sci., 144: 141-152.
Fang, Y., Wang, L., Xin, Z., Zhao, L., An, X. and Hu, Q. 2008. Effect of Foliar Application of Zinc, Selenium, and Iron Fertilizers on Nutrients Concentration and Yield of Rice Grain in China. J. Agric. Food Chem., 56: 2079–2084.
Feng, R.W., Wei, C.Y. and Tu, S.X. 2013. The roles of selenium in protecting plants against abiotic stresses. Environ. Exp. Bot., 87: 58-68.
Feng, R.W., Wei, C.Y., Tu, S.X. and Wu, F.C. 2009. Effects of Se on the uptake of essential elements in Pteris vittata L. Plant Soil, 325: 123-132.
Garcia-Banuelos, M.L., Sanchez, E. and Hermosillo-Cereceres, M.A. 2011. The importance of selenium biofortification in food crops. Curr. Nutr. Food Sci., 7: 181-190.
Germ, M., Kreft, I. and Osvald, J. 2005. Influence of UV-B exclusion and selenium treatment on photochemical efficiency of photosystem II, yield and respiratory potential in pumpkins (Cucurbita pepo L.). Plant Physiol. Biochem., 43: 445-448.
Germ, M., Stibilj, V., Osvald, J. and Kreft, I. 2007. Effect of selenium foliar application on chicory (Cichorium intybus L.). J. Agric. Food Chem., 55: 795-798.
German Nutrition Society. 2002. Reference Values for Nutrient Intake, 1st ed. in English; Umschau Braus GmbH, Frankfurt/Main, Germany, 215 pp.
Ghafari, H. and Razmjoo, J. 2005. Response of Durum Wheat to Foliar Application of Varied Sources and Rates of Iron Fertilizers. J. Agr. Sci. Tech., 17: 321-331.
Golob, A., Germ, M., Kreft, I., Zelnik, I., Kristan, U. and Stibilj, V. 2016. Selenium uptake and Se compounds in Se-treated buckwheat. Acta Bot. Croat., 75: 17-24.
Golubkina, N., Kekina, H., Caruso, G. 2018. Yield, Quality and Antioxidant Properties of Indian Mustard (Brassica juncea L.) in Response to Foliar Biofortification with Selenium and Iodine. Plants, 7: 80. doi:10.3390/plants7040080.
Guerrero, B., Llugany, M., Palacios, O. and Valiente, M. 2014. Dual effects of different selenium species on wheat. Plant Physiol. Biochem., 83: 300-307.
Hawrylak-Nowak, B., Matraszek, R. and Pogorzelec, M. 2015. The dual effects of two inorganic selenium forms on the growth, selected physiological parameters and macronutrients accumulation in cucumber plants. Acta Physiol. Plant., 37: 41.
Hopper, J.L. and Parker, D.R. 1999. Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulfate. Plant Soil, 210: 199-207.
Jerše, A., Kacjan-Maršić, N., Šircelj, H., Germ, M., Kroflič, A. and Stibilj, V. 2017. Seed soaking in I and Se solutions increases concentrations of both elements and changes morphological and some physiological parameters of pea sprouts. Plant Physiol. Biochem., 118: 285-294.
Jiang, Y., Feng, X., Yang, Y., Qi, X., Ren, Y., Gao, Y., Liu, W., Hu Y. and Zeng, Z. 2018. Performance of common buckwheat (Fagopyrum esculentum M.) supplied with selenite or selenate for selenium biofortification in northeastern China. Crop J., 6: 386-393.
Kenner, R.A. and Ahmed, S.I. 1975. Measurements of electron-transport activities in marine phytoplankton. Mar. Biol., 33: 119-127.
Kopsell, D.A., Sams, C.E., Barickman, T.C. and Deyton, D.E. 2009. Selenization of basil and cilantro through foliar applications of selenate-selenium and selenite-selenium. Hortscience, 44: 438–442.
Kreft, I., Mechora, Š., Germ, M. and Stibilj, V. 2013. Impact of selenium on mitochondrial activity in young Tartary buckwheat plants. Plant Physiol. Biochem, 63: 196-199.
Li, H.F., McGrath, S.P. and Zhao, F.J. 2008. Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol., 178: 92-102.
Li, M., Zhao, Z., Zhou, J., Zhou, D., Chen, B., Huang, L., Zhang, Z. and Liu, X. 2018. Effects of foliar spray of selenite or selenate at different growth stages on selenium distribution and quality of blueberries. J. Sci. Food Agric., 12: 4700-4706. doi: 10.1002/jsfa.9004.
Li, J., Liang, D.L., Qin, S.Y., Feng, P.Y. and Wu, X.P. 2015. Effects of selenite and selenate application on growth and shoot selenium accumulation of pak choi (Brassica chinensis L.) during successive planting conditions. Environ. Sci. Pollut. Res., 22: 11076-11086.
Lv, J.Y., Wu, J., Zuo, J.H., Fan, L.L., Shi, J.Y., Gao, L.P., Li, M. and Wang, Q. 2017. Effect of Se treatment on the volatile compounds in broccoli. Food Chem., 216: 225-233.
Malagoli, M., Schiavon, M., dall’Acqua, S. and Pilon-Smits, E.A.H. 2015. Effects of selenium biofortification on crop nutritional quality. Front. Plant Sci., 6: 280. doi: 10.3389/fpls.2015.00280.
Mimmo, T., Tiziani, R., Valentinuzzi, F., Lucini L., Nicoletto, C., Sambo, P., Scampicchio, M., Pii, Y and Cesco, S. 2017. Selenium Biofortification in Fragaria × ananassa: Implications on Strawberry Fruits Quality, Content of Bioactive Health Beneficial Compounds and Metabolomic Profile. Front. Plant Sci., 8: 1887. doi: 10.3389/fpls.2017.01887.
Official Gazette No. 110/2010. Regulation on integrated production of vegetables. http://www.fao.org/faolex/results/details/en/?details=LEX-FAOC101952 (December, 12 2017).
Packard, T.T. 1971. The measurement of respiratory electron-transport activity in marine phytoplankton. J. Mar. Res., 29: 235-243.
Pedrero, Z., Madrid, Y., Hartikainen, H. and Camara, C. 2008. Protective effect of selenium in broccoli (Brassica oleracea) plants subjected to cadmium exposure. J. Agric. Food Chem., 56: 266-271.
Puccinelli, M., Malorgio, F. and Pezzarossa, B. 2017. Selenium Enrichment of Horticultural Crops. Molecules, 22: 933 doi:10.3390/molecules22060933.
Rios, J.J., Blasco, B., Cervilla, L.M., Rubio-Wilhelmi, M.M., Rosales, M.A., Sanchez-Rodriguez, E., Romero, L. and Ruiz, J.M. 2010. Nitrogen-use efficiency in relation to different forms and application rates of Se in lettuce plants. J. Plant Growth Regul., 29: 164-170.
Rios, J.J., Rosales, M.A., Blasco, B., Cervilla, L.M., Romero, L. and Ruiz, J.M. 2008. Biofortification of Se and induction of the antioxidant capacity in lettuce plants. Sci. Hortic., 116: 248-255.
Saffaryazdi, A., Lahouti, M., Ganjeali, A. and Bayat, H. 2012. Impact of selenium supplementation on growth and selenium accumulation on spinach (Spinacia oleracea L.) plants. Not. Sci. Biol., 4: 95–100.
Sams, C.E., Panthee, D.R., Charron, C.S., Kopsell, D.A. and Yuan, J.S. 2011. Selenium regulates gene expression for glucosinolate and carotenoid biosynthesis in arabidopsis. J. Am. Soc. Hortic. Sci., 136: 23-34.
Schreiber, U., Kühl, M., Klimant, I. and Reising, H. 1996. Measurement of chlorophyll fluorescence within leaves using modified PAM fluorometer with a fiber-optic microprobe. Photosynth. Res., 47: 103–109.
Smoleń, S., Skoczylas, Ł., Ledwozyw-Smoleń, L., Rakoczy, R., Kopeć, A., Piątkowska, E., Bieżanowska-Kopeć, R., Koronowicz, A. and Kapusta-Duch, J. 2016. Biofortification of Carrot (Daucus carota L.) with Iodine and Selenium in a Field Experiment. Front. Plant. Sci., 7: 730.
Smrkolj, P., Germ, M., Kreft, I. and Stibilj, V. 2006. Respiratory potential and Se compounds in pea (Pisum sativum L.) plants grown from Se-enriched seeds. J. Exp. Bot., 57: 3595-3600.
Šircelj, H., Tausz, M., Grill, D. and Batič, F. 2007. Detecting different levels of drought stress in apple trees (Malus domestica Borkh.) with selected biochemical and physiological parameters. Sci. Hortic., 113: 362-369.
Tausz, M., Wonisch, A., Grill, D., Morales, D. and Jimenez, M.S. 2003. Measuring antioxidants in tree species in the natural environment, from sampling to data evaluation. J. Exp. Bot., 54: 1505-1510.
Terry, N., Zayed, A.M., de Souza, M.P. and Tarun, A.S. 2000. Selenium in higher plants. Annu. Rev. Plant. Physiol. Plant. Molec. Biol., 51: 401-432.
Tóth, G., Langó, Z., Padisák, J. and Varga, E. 1994. Terminal electron-transport system (ETS)-activity in the sediment of lake balaton, hungary. Hydrobiologia, 281: 129-139.
Valkama, E., Kivimaenpaa, M., Hartikainen, H. and Wulff, A. 2003. The combined effects of enhanced UV-B radiation and selenium on growth, chlorophyll fluorescence and ultrastructure in strawberry (Fragaria x ananassa) and barley (Hordeum vulgare) treated in the field. Agric. For. Meteorol., 120: 267-278.
Xue, T.L., Hartikainen, H. and Piironen, V. 2001. Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant Soil, 237: 55-61.
Zhang, Y.L., Pan, G.X., Chen, J. and Hu, Q.H. 2003. Uptake and transport of selenite and selenate by soybean seedlings of two genotypes. Plant Soil, 253: 437-443.