Biochemical Mechanisms and Cross Resistance Patterns of Chlorpyrifos Resistance in a Laboratory-Selected Strain of Diamondback Moth, Plutella xylostella (Lepidoptera: Plutellidae)

Document Type : Original Research

Authors
1 Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Islamic Republic of Iran.
2 Plant Protection Research Department, Yazd Agricultural and Natural Resources Research and Education Center, AREEO, Yazd, Islamic Republic of Iran.
Abstract
Diamondback moth (Plutella xylostella) is a serious pest of cruciferous vegetables worldwide. In Iran, it is commonly controlled by using chlorpyrifos. Due to a range of biochemical and behavioral features, this pest can rapidly develop resistance to many insecticides from different groups. To achieve a better resistance management plan, a chlorpyrifos resistant strain of P. xylostella was selected under laboratory conditions and its cross resistance to five other insecticides and resistance characteristics were investigated. After 15 generations of selection, the selected strain (CLRS) developed 39.61-fold higher resistance to chlorpyrifos in comparison with susceptible strain (AL). CLRS exhibited 19.62-, 17.84-, 3.43- and 3.33-fold cross resistance to hexaflumuron, indoxacarb, thiodicarb and flubendiamide, respectively, but showed no cross resistance to abamectin. Synergism and biochemical studies suggested potential involvement of Esterase (EST) in CLRS. However, no difference was seen for Glutahion-S-Transferase (GSTs) and Mixed Function Oxidase (MFO) in CLRS and AL strains. To determine the role of AcetylCholinEsterase (AChE) insensitivity in resistance mechanism, Kinetic parameters (Km and Vmax) and inhibitory effect of chlorpyrifos-oxon on this enzyme were evaluated. Affinities and hydrolyzing efficiencies of AChE in CLRS were higher than AL. This enzyme in CLRS was also less sensitive to inhibition by chlorpyrifos-oxon. Results indicated that chlorpyrifos resistance exhibited cross resistance to other insecticides from different classes and enhanced EST activity and AChE insensitivity were probably the main factors in chlorpyrifos resistance. These results can help the users of insecticides and can delay the resistance development of P. xylostella.

Keywords

Subjects


Agboyi, L. K., Ketoh, G. K., Martin, T., Glitho, I. A. and Tamo, M. 2016. Pesticide resistance in Plutella xylostella (Lepidoptera: Plutellidae) populations from Togo and Benin. Int. J. Trop. Insect. Sci., 36: 204-210.
Alout, H., Labbe, P., Berthomieu, A., Makoundou, P., Fort, P., Pasteur, N. and Weill, M. 2016. High chlorpyrifos resistance in Culex pipiens mosquitoes: strong synergy between resistance genes. Heredity, 116: 224.231.
Asare-Bediako, E., Addo-Quaye, A. A. and Mohammed, A. 2010. Control of Diamondback Moth (Plutella xylostella) on Cabbage (Brassica oleracea var capitata) using Intercropping with Non-Host Crops. Am. J. Food Technol., 5: 269-274.
Askari Saryazdi, G., Hejazi, M. J., Ferguson, J. S. and Rashidi, M. R. 2015. Selection for chlorpyrifos resistance in Liriomyza sativae Blanchard: cross resistance patterns, stability and biochemical mechanisms. Pestic. Biochem. Physiol., 124: 86-92.
Brogdon, W. G., McAllister, I. C. and Vulule, J. 1997. Heme peroxidase activity measured in single mosquitoes identiقes individuals expressing an elevated oxidase for insecticide resistance. J. Am. Mosq. Control. Assoc., 13: 233-237.
Ejaz, M., Afzal, M. B. S., Shabbir, G., Serrao, J. E., Shad, S. A. and Muhammad, W. 2016. Laboratory selection of chlorpyrifos resistance in an invasive pest, Phenacoccus solenopsis (Homoptera: Pseudococcidae): cross resistance, stability and fitness costand fitness cost. Pestic. Biochem. Physiol., 137: 8-14.
Ellman, G. L., Courtney, K. D., Andres, J. V. and Featherstone, R. M. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 7: 88–95.
Fitriasari, D. E and Prijono, D. 2011. Field efficacy of two Botanical insecticide formulation against cabbage insect pests, Crocidolomia pavonana (F) (Lepidoptera: Pyralidae) and Plutella xylostella (L) (Lepidoptera: Yponomeutidae). ISSAAS., 17: 38-47
Furlong, M. J., Wright, D. J. and Dosdall, L. M. 2012. Diamondback moth ecology and management: problems, progress, and prospects. Ann. Rev. Entomol., 58: 517–541.
Gong, Y. J., Wang, Z. H., Shi, B. C., Kang, Z. J., Zhu, L., Jin, G. H. and Wei, S. J. 2013. Correlation between pesticide resistance and enzyme activity in the diamondback moth, Plutella xylostella. J. Insect. Sci., 13: 1-13.
Habig, W. H., Pabst, M. J. and Jakoby, W. B. 1974. Glutathion S-transferase, the first step in mercapturic acid formation. J. Biol. Chem., 249: 7130-7139.
Hama, H. 1990. Insecticide resistance of diamondback moth, Plutella xylostella in Japan. JARQ., 24: 22-30.
Kang, C. Y., Wu, G. and Miyata, T. 2006. Synergism of enzyme inhibitors and mechanisms of insecticides resistance in Bemisia tabaci (Gennadius) (Hom., Aleyrodidae). J. Appl. Entomol., 130: 377-385.
Liu, X., Wang, H. Y., Ning, Y. B., Qiao, K. and Wang, K. Y. 2015. Resistance selection and characterization of chlorantraniliprole resistance in Plutella xylostella (Lepidoptera: Plutellidae). J. Econ. Entomol., 108: 1978-1985.
Nehare, S., Ghodki, B. S., Lande, G. K., Pawade, V. and Thakare, A. S. 2010. Inheritance of resistance and cross resistance pattern in indoxacarb-resistant diamondback moth Plutella xylostella L. Entomol. Res., 40: 18-25.
Odhiambo, J. A. O., Gbewonyo, W. S. K., Obeng-Ofori, D., Wilson, M. D., Boakye, D. A. and Brown, C. 2010. Resistance of diamondback moth to insecticides in selected cabbage farms in southern Ghana. IJBCS., 4: 1397–1409.
Picollo, M. I., Vassena, C. V., Cueto, G. A. M., Vernetti, M. and Zerba, E. N. 2000. Resistance to insecticides and effect of synergists on permethrin toxicity in Pediculus capitis (Anoplura: Pediculidae) from Buenos Aires. J. Med. Entomol., 37: 721-725.
Salinas, P. I. 1977. Studies on the ecology of the diamondback moth, Plutella xylostella (L) (Lepidoptera: Plutellidae). Distribution and description of different stages. Acta Biologica Venezuela., 9: 271-282.
Sarfraz, M. and Keddie, B. A. 2005. Conserving the efficacy of insecticides against Plutella xylostella (L.) (Lep., Plutellidae). J. Appl. Entomol., 129: 149-157.
Selvi, S., Edah, M. A., Nazni, W. A., Lee, H. L. and Azahari, A. H. 2007. Characterization on malathion and permethrin resistance by bioassays and the variation of esterase activity with the life stages of the mosquito Culex quinquefasciatus. Trop. Biomed., 24: 63–75.
Shelton, A. M., Sances, F. V., Hawley, J., Tang, J. D., Boune, M., Jungers, D., Collins, H. L., and Farias, J. 2000. Assessment of insecticide resistance after the outbreak of diamondback moth (Lepidoptera: Plutellidae) in California in 1997. J. Econ. Entomol., 93: 931-936.
Shelton, A.M., Robertson, J. L. and Tang, J. D. 1993. Resistance of diamondback moth (Lepidoptera: Yponomeutidae) to Bacillus thuringiensis subspecies in the field. J. Econ. Entomol., 86: 697–705.
Shen, G. M., Wang, X. N., Dou, W. and Wang, J. J. 2012. Biochemical and molecular characterisation of acetylcholinesterase in four field populations of Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Pest. Manage. Sci., 68: 1553–1563.
SPSS, 2007. Spss 16 for windows user,s guide release. Chicago Spss Inc.
Steinbach, D., Moritz, G. and Nauen, R. 2017. Fitness costs and life table parameters of highly insecticide resistant strains of Plutella xylostella (L.) (Lepidoptera: Plutellidae) at different temperatures. Pest. Manage. Sci., 73: 1789-1798.
Talekar, N. S. and Shelton, A. M. 1993. Biology, ecology, and management of the diamondback moth. Ann. Rev. Entomol. 38: 275-301.
Troczka Bartlomiej, J., Williamson, M. S., Field, L. M., and Davies, T. G. E. 2017. Rapid selection for resistance to diamide insecticides in Plutella xylostella via specific amino acid polymorphisms in the ryanodine receptor. Neurotoxicology., 60: 224-233.
Van Asperen, K. 1962. A study of housefly esterases by means of a sensitive colorimetric method. J. Insect. Physiol., 8: 401–414.
Wang, L., Zhang, Y., Han, Z., Liu, Y. and Fang, J. 2010. Cross resistance and possible mechanisms of chlorpyrifos resistance in Laodelphax striatellus (Fallen). Pest. Manag. Sci., 66: 1096-1100.
Xu, L., Wu, M. and Han, Z. 2013. Biochemical and molecular characterization and cross resistance in field and laboratory chlorpyrifos-resistant strains of Laodelphax striatellus (Hemiptera: Delphacidae) from eastern China. Pest. Manag. Sci., 70: 1118–1129.
Yang, M. L., Zhang, J. Z., Zhu, K. Y., Xuan, T., Liu, X. J., Guo, Y. P. and Ma, E. B. 2009. Mechanisms of organophosphate resistance in a field population of oriental migratory locust, Locusta migratoria manilensis (Meyen). Arch. Insect. Biochem. Physio., 71: 3–15.
Yeasmin, A. M., Waliullah, T. M. and Rahman, A. S. 2014. Synergistic effects of chlorpyrifos with piperonyl butoxide (pbo) against the lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae). APJR., 3: 305-310.
Zamani, P., Sajedi, R. H., Ghadamyari, M. and Memarizadeh, N. 2014. Resistance mechanisms to chlorpyrifos in Iranian populations of the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). JAST., 16: 277–289.
Zhang, N. N., Liu, C. F., Yang, F., Dong, S. L. and Han, Z. J. 2012. Resistance mechanisms to chlorpyrifos and F392W mutation frequencies in the acetylcholinesterase ace1 allele of field populations of the tobacco whitefly, Bemisia tabaci in China. J. Insect. Sci., 12:41.
Zhu, K. Y. and Gao, J. R. 1999. Increased activity associated with reduced sensitivity of acetylcholinesterase in organophosphate-resistant greenbug, Schizaphis graminum (Homoptera: Aphididae). Pestic. Sci., 55: 11–17.
Zibaee, I., Mahmood, K., Esmaeily, M., Bandani, A. R. and Kristensen, M. 2017. Organophosphate and pyrethroid resistances in the tomato leaf minor Tuta absoluta (Lepidoptera: Gelechiidae) from Iran. J. Appl. Entomol., 1-11.