Morphological and Physiological Responses of Maize Seedlings under Drought and Waterlogging

Authors
1 MOA Key Laboratory of Crop Physiology, Ecology and Cultivation in the Middle Reaches of Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People Republic of China.
2 College of Agronomy and Resources and Environment, Tianjin Agricultural University, Tianjin, People Republic of China.
3 Environment and Plant Protection Institute, Chinese Academy of Tropical Agriculture Sciences, Haikou , Hainan, People Republic of China.
4 4Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology of Ministry of Agriculture, Beijing, People Republic of China.
Abstract
Waterlogging and drought are severe constrains that limit maize seedling growth in tropical and subtropical regions. It is significant to determine the differences in morphological and physiological responses of maize to drought and excess soil water, with a view toward better breeding and field management. In the present experiment, different levels of soil water availability were initiated at the one-leaf (V1) stage of two maize cultivars (Denghai9 and Yidan629): Control (CK), Severe Drought (SD), Light Drought (LD), Severe Waterlogging (SW), and Light Waterlogging (LW). The results indicated that waterlogging had more discernible impact on the seedling growth of both cultivars than drought stress. The Relative Growth Rate (RGR) of shoots and roots, along with root length, volume, and surface area were all markedly decreased in both cultivars under waterlogging stress. The malondialdehyde content increased significantly in roots and leaves under waterlogging treatment. In both cultivars, SuperOxide Dismutase (SOD) was mostly activated in roots and leaves at the three-leaf (V3) stage by waterlogging stress, while the Catalase (CAT) activity apparently increased under drought stress. The activity of Peroxidase (POD) distinctly enhanced in both cultivars under drought and waterlogging stress. Ascorbate Peroxidase (APX) showed constant activity with prolongation of waterlogging stress, and Glutathione Reductase (GR) activity notably increased in roots under waterlogging conditions at the six-leaf (V6) stage. We concluded that SOD, POD, APX, and GR were the most important antioxidant enzymes under waterlogging conditions, whereas CAT and POD appeared to play key roles under drought stress.

Keywords

Subjects


1. Abedi, T. and Pakniyat, H. 2010. Antioxidant Enzyme Changes in Response to Drought Stress in Ten Cultivars of Oilseed Rape (Brassica napus L.). Czech J. Genet. Plant, 46: 27-34.
2. Aebi, H. E. 1983. Catalase. In: “Methods of Enzymatic Analysis”, (Eds.): Bergmeyer, J. and Grabi, M. Verlag Chemie, Weinheim. pp. 273-286.
3. AICRP. 2006. Directors’ Report. 49th Annual Maize Workshop of all India Coordinated Maize Research Project, 4-6 April 2006, Held at Birsa Agriculture University, Ranchi (Jharkhand), India.
4. Andrade, F. H., Echarte, L., Rizzalli, R., Della Maggiora, A. and Casanovas, M. 2002. Kernel Number Prediction in Maize under Nitrogen or Water Stress. Crop Sci., 42: 1173-117.
5. Badawi, G. H., Yamauchi, Y., Shimada, E., Sasaki, R. and Kawano, N. 2004. Enhanced Tolerance to Salt Stress and Water Deficit by Overexpressing Superoxide Dismutase in Tobacco (Nicotiana tabacum) Chloroplasts. Plant Sci., 166(4): 919-928.
6. Cairns, J.E., Sonder, K., Zaidi, P. H. and Verhulst, N. 2012. Maize Production in a Changing Climate: Impacts, Adaptation, and Mitigation Strategies. Adv. Agron., 114(1): 1-58.
7. Chen, J. X. and Wang, X. F. 2006. Plant Physiology Experimental Guide. Higher Education Press, Beijing, 24(25): 55- 56
8. Comas, L. H., Becker, S. R., Cruz, V. M. V., Byrne, P. F. and Dierig, D. A. 2013. Root Traits Contributing to Plant Productivity under Drought. Front Plant Sci., 4(2): 442.
9. Dat, J. F., Inzé, D. and Van Breusegem, F. 2001. Catalase-Deficient Tobacco Plants: Tools for in Planta Studies on the Role of Hydrogen Peroxide. Redox Rep., 6(1): 37-42.
10. Earl, H. J. and Davis, R. F. 2003. Effect of Drought Stress on Leaf and Whole Canopy Radiation Use Efficiency and Yield of Maize. Agron. J., 95(3): 688-696.
11. Edmeades, G., Bänziger, M. and Campos, H. 2006. Improving Tolerance to Abiotic Stresses in Staple Crops: A Random or Planned Process? In Plant Breeding: The Arnel R. Hallauer International Symposium, Blackwell Publishing, PP. 293-309.
12. Edmeades, G. O., Bolanos, J. and Lafitte, H. R. 1992. Progress of Breeding for Drought Tolerance in Maize. “Proceeding of the 47th Annual Corn and Sorghum Ind. Res. Conf. 1992”, (Ed.): Wilkinson, D. ASTA, Washington, PP. 93-111.
13. Ekmekçi, Y., Tanyolac, D. and Ayhan, B. 2008. Effects of Cadmium on Antioxidant Enzyme and Photosynthetic Activities in Leaves of Two Maize Cultivars. J. Plant Physiol., 165(6): 600-611.
14. Fageria, N. K., Baligar, V. C. and Clark, R. 2006. Physiology of Crop Production. Food Products Press Crop. (3):504.
15. FAO. 2012. FAOSTAT [Online]. Available: http://www.fao.org/. [Accessed 2013-01-22]
16. Ge, T., Sui, F., Bai, L., Tong, C. and Sun, N. 2012. Effects of Water Stress on Growth, Biomass Partitioning, and Water-Use Efficiency in Summer Maize (Zea mays L.) throughout the Growth Cycle. Acta Physiol. Plant., 34(3): 1043-1053.
17. Gechev, T. S., Van Breusegem, F., Stone, J. M., Denev, I. and Laloi, C. 2006. Reactive Oxygen Species as Signals that Modulate Plant Stress Responses and Programmed Cell Death. Bioessays, 28(11): 1091-1101.
18. Giannopolitis, C. N. and Ries, S. K. 1977. Superoxide Dismutases I. Occurrence in Higher Plants. Plant Physiol., 59(2): 309-314.
19. Grzesiak, M. T., Ostrowska, A., Hura, K. and Rut, G. 2014. Interspecific Differences in Root Architecture among Maize and Triticale Genotypes Grown under Drought, Waterlogging and Soil Compaction. Acta Physiol. Plant., 36(12): 3249-3261.
20. Hao, Z. B., Cang, J. and Xu, Z. 2004. Plant Physiology Experiment. Harbin Institute of Technology Press, Harbin, China. (in Chinese)
21. Hongbo, S., Zongsuo, L. and Mingan, S. 2005. Changes of Anti-Oxidative Enzymes and MDA Content under Soil Water Deficits among 10 Wheat (Triticum aestivum L.) Genotypes at Maturation Stage. Colloids and Surfaces B: Biointerfaces, 45(1): 7-13.
22. Huang, X. H., Yin, X. H., Liu, Y., Li, J. X. and Xiong, X. Z. 2012. Effects of Drought Stress on the Growth of Mulberry (Morus alba L.) Trees in the Hydro-Fluctuation Belt of the Three Gorges Reservoir Area. Journal of Chongqing Normal University (Natural Science), 29(3): 151-155.
23. Kavas, M., Baloğlu, M. C., Akça, O., Köse, F. S. and Gökçay, D. 2013. Effect of Drought Stress on Oxidative Damage and Antioxidant Enzyme Activity in Melon Seedlings. Turk J. Biol., 37(4): 491-498.
24. Li, H. 2009. Citrus Tree Abiotic and Biotic Stress and Implication of Simulation and Modeling Tools in Tree Management. Tree For. Sci. Biotech., 3: 66-78
25. Li, H., and Lascano, R. J. 20111. Deficit Irrigation for Enhancing Sustainable Water Use: Comparison of Cotton Nitrogen Uptake and Prediction of Lint Yield in a Multivariate Autoregressive State-Space Model. Environ. Exp. Bot., 71: 224-231
26. Li, H., Li, X., Zhang, D., Liu, H. and Guan, K. 2013. Effects of Drought Stress on the Seed Germination and Early Seedling Growth of the Endemic Desert Plant Eremosparton songoricum (Fabaceae). Excli. J., 12: 89-101.
27. Lin, K. H., Chao, P. Y., Yang, C. M. and Cheng, W. 2006. The Effects of Flooding and Drought Stresses on the Antioxidant Constituents in Sweet Potato Leaves. Bot. Stud., 47(4): 417-426.
28. Liu, Y. Z., Bin, T., Zheng, Y. L., Xu, S. Z. and Qiu, F. Z. 2010. Screening Methods for Waterlogging Tolerance at Maize (Zea mays L.) Seedling Stage. Agricultural Sciences in China, 9(3): 362-369.
29. Lizaso, J. I., Melendez, L. M. and Ramirez, R. 2001. Early Flooding of Two Cultivars of Tropical Maize. I. Shoot and Root Growth. J. Plant Nutr., 24(7): 979-995.
30. Loades, K. W., Bengough, A. G. and Bransby, M. F. 2013. Biomechanics of Nodal, Seminal and Lateral Roots of Barley: Effects of Diameter, Waterlogging and Mechanical Impedance. Plant Soil., 370(1-2): 407-418.
31. Mafakheri, A., Siosemardeh, A., Bahramnejad, B., Struik, P. C. and Sohrabi, Y. 2011. Effect of Drought Stress and Subsequent Recovery on Protein, Carbohydrate Contents, Catalase and Peroxidase Activities in Three Chickpea (Cicer arietinum) Cultivars. Aust. J. Crop Sci., 5(10): 1255.
32. Malik, A. I., Colmer, T. D. and Lambers, H. 2001. Changes in Physiological and Morphological Traits of Roots and Shoots of Wheat in Response to Different Depths of Waterlogging. Funct. Plant Biol., 28(11): 1121-1131.
33. Mejri, M., Siddique, K. H., Saif, T., Abdelly, C. and Hessini, K. 2016. Comparative Effect of Drought Duration on Growth, Photosynthesis, Water Relations, and Solute Accumulation in Wild and Cultivated Barley Species. J. Plant Nutr. Soil Sci., 179(3): 327-335.
34. Mittler, R. 2002. Oxidative Stress, Antioxidants and Stress Tolerance. Trends Plant Sci., 7(9):405-410.
35. Monferran, M. V., Sanchez, Agudo, A. J., Pignata, M. L. and Wunderlin, D. A., 2009. Copper-Induced Response of Physiological Parameters and AntioxidantE in the aquatic Macrophyte Potamogeton pusillus. Environ. Pollut., 157: 2570–2576.
36. Nagy, Z., Tuba, Z., Zsoldos, F. and Erdei, L. 1995. CO2-Exchange and Water Relation Responses of Sorghum and Maize during Water and Salt Stress. J. Plant Physiol., 145(4), 539-544.
37. Nakano, Y. and Asada, K. 1981. Hydrogen Peroxide Is Scavenged by Ascorbate-Specific Peroxidase in Spinach Chloroplasts. Plant Cell Physiol., 22(5): 867-880.
38. Pearson, M., Saarinen, M., Nummelin, L. and Heiskanen, J. 2013. Tolerance of Peat-Grown Scots Pine Seedlings to Waterlogging and Drought: Morphological, Physiological, and Metabolic Responses to Stress. For. Ecol. Manage., 307(6): 43-53.
39. Prasanna, B. M. 2016. Developing and Deploying Abiotic Stress-Tolerant Maize Varieties in the Tropics: Challenges and Opportunities. In Molecular Breeding for Sustainable Crop Improvement, Springer International Publishing, PP. 61-77.
40. Qadir, S., Qureshi, M. I., Javed, S. and Abdin, M. Z. 2004. Genotypic Variation in Phytoremediation Potential of Brassica juncea Cultivars Exposed to Cd Stress. Plant Sci., 167(5):1171-1181.
41. Radford, P. J. 1967. Growth Analysis Formulae-Their Use and Abuse. Crop Sci., 7(3): 171-175.
42. Sairam, R. K. and Saxena, D. C. 2010. Oxidative Stress and Antioxidants in Wheat Genotypes: Possible Mechanism of Water Stress Tolerance. J. Agron. Crop. Sci., 184(1): 55-61.
43. Sairam, R. K., Srivastava, G. C. and Saxena, D. C. 2000. Increased Antioxidant Activity under Elevated Temperatures: A Mechanism of Heat Stress Tolerance in Wheat Genotypes. Biol. Plantarum., 43(2): 245-251.
44. Sarker, B. C. and Hara, M. 2010. Growth Dynamics and Spatial Variation of the Eggplant Root System under Elevated CO2 and Soil Moisture Stress. J. Agro For. Environ., 4(2): 7-14.
45. Schaedle, M. and Bassham, J. A. 1977. Chloroplast Glutathione Reductase. Plant Physiol., 59(5): 1011-1012.
46. Saeidi, M. and Abdoli, M. 2015. Effect of Drought Stress during Grain Filling on Yield and Its Components, Gas Exchange Variables, and Some Physiological Traits of Wheat Cultivars. J. Agr. Sci. Tech., 17(4): 885-898.
47. Sharma, P., Jha, A. B., Dubey, R. S., and Pessarakli, M. 2012. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. J. Bot., 2012.
48. Tang, B., Xu, S. Z., Zou, X. L., Zheng, Y. L. and Qiu, F. Z. 2010. Changes of Antioxidative Enzymes and Lipid Peroxidation in Leaves and Roots of Waterlogging-Tolerant and Waterlogging-Sensitive Maize Genotypes at Seedling Stage. Agri. Sci. China, 9(5): 651-661.
49. Tuna, A. L., Kaya, C. and Ashraf, M. 2010. Potassium Sulfate Improves Water Deficit Tolerance in Melon Plants Grown under Glasshouse Conditions. J. Plant Nutr., 33(9): 1276-1286.
50. Wang, J., Zhang, H. and Allen, R. D. 1999. Over Expression of an Arabidopsis Peroxisomal Ascorbate Peroxidase Gene in Tobacco Increases Protection against Oxidative Stress. Plant Cell Physiol., 40(7): 725-732.
51. Waraich, E. A., Ahmad, R. and Ashraf, M. Y. 2011. Improving Agricultural Water Use Efficiency by Nutrient Management in Crop Plants. Acta Agr. Scand. B-S, 61(4): 291-304.
52. Willekens, H., Chamnongpol, S., Davey, M. and Schraudner, M. 1997. Catalase Is a Sink for H2O2 and Is Indispensable for Stress Defence in C3 Plants. EMBO J., 16 (16): 4806-4816.
53. Yang, Y., Chao, H., Liu, Q., Bo, L. and Wang, J. 2008. Effect of Drought and Low Light on Growth and Enzymatic Antioxidant System of Picea asperata, Seedlings. Acta Physiol. Plant., 30(4): 433-440
54. Zaidi, P. H., Rafique, S. and Singh, N. N. 2003. Response of Maize (Zea mays L.) Genotypes to Excess Soil Moisture Stress: Morpho-Physiological Effects and Basis of Tolerance. Eur. J. Agron., 19(3): 383-399.
55. Zaidi, P. H., Rafique, S., Rai, P. K. and Singh, N. N 2004. Tolerance to Excess Moisture in Maize (Zea mays L.). Susceptible Crop Stages and Identification of Tolerant Genotypes. Field Crops Res., 90(2): 189-202.
56. Zhang, J. and Kirkham, M. B. 1996. Antioxidant Responses to Drought in Sunflower and Sorghum Seedlings. New Phytol., 132(3): 361-373.
57. Zhang, X., Yin, H. B., Chen, S. H., He, J. and Guo, S. L. 2014. Changes in Antioxidant Enzyme Activity and Transcript Levels of Related Genes in Limonium sinense Kuntze Seedlings under NaCl Stress. J. Chem., 2014(5): 1-6.
58. Zhang, Xin. L., Mel, G., Shiqing, L., Shengxiu, L. and Zongsuo, L. 2011. Modulation of Plant Growth, Water Status and Antioxidantive System of Two Maize (Zea may L.) Cultivars Induced by Exogenous Glycinebetaine under Long Term Mild Drought Stress. Pak. J. Bot., 43: 1587-1594.
59. Zhang, Z., Jiang, H., Wei, Z. and Zheng, Y. 2003. Study on Enzymology in Root of Maize Inbred after Waterlogging Stress. Hubei Agricultural Sciences (in Chinese) 1(3): 25-27.