Study of Potential Probiotic Properties of Lactic Acid Bacteria Isolated from Raw and Traditional Fermented Camel Milk

Document Type : Original Research

Authors
1 Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Islamic Republic of Iran.
2 Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Islamic Republic of Iran.
3 Cancer Research Center, Golestan University of Medical Sciences, Gorgan, Islamic Republic of Iran.
Abstract
In the present research work, the potential probiotic properties of Lactococcus lactis KMCM3 and Lactobacillus helveticus KMCH1 isolated from raw camel milk and traditional fermented camel milk (Chal), respectively, were studied. The probiotic properties of isolates that were investigated included the hemolysis, antibiotic resistance, antibacterial features, resistance to low pH and bile salts, survival under simulated GastroIntestinal Tract (GIT) conditions, adhesion ability to hydrocarbon, and their auto-aggregation and co-aggregation rates. None of isolates exhibited hemolytic activity. They were susceptible against tetracycline, penicillin, ampicillin, chloramphenicol, erythromycin and vancomycin. Lac. lactis KMCM3 and L. helveticus KMCH1 retained their viability at pH 3.0 (8.68 and 8.6 log cfu mL-1, respectively), 0.3% w/v bile salts (8.23 and 8.58 log cfu mL-1, respectively) and under simulated GIT conditions (8.31 and 8.46 log cfu mL-1, respectively). Both of these isolates inhibited the growth of E. coli, S. aureus, L. monocytogenes, B. cereus and S. enterica subsp. enterica serovar Typhimurium with MIC values of 6.25 to 25 mg mL-1. In addition, They exhibited an ability to adhere to hydrocarbon (xylene), and possessed a high auto-aggregation and co-aggregation rate (more than 40%).

Keywords

Subjects


1. Abushelaibi, A., Al-Mahadin, S., El-Tarabily, K., Shah, N. P. and Ayyash, M. 2017. Characterization of potential probiotic lactic acid bacteria isolated from camel milk. LWT - Food Science and Technology, 79: 316-325.
2. Akhmetsadykova, S. H., Baubekova, A., Konuspayeva, G., Akhmetsadykov, N., Faye, B. and Loiseau, G. 2015. Lactic acid bacteria biodiversity in raw and fermented camel milk. African Journal of Food Science and Technology, 3: 84-88.
3. Ammor, M.S., Bélen Flórez, A., van Hoek, A.H.A.M., Reyes-Gavilan, C.G.D.L., Aarts, H.J. M., Margolles, A. and Mayo, B. 2008. Molecular characterization of intrinsic and acquired antibiotic resistance in lactic acid bacteria and bifidobacteria. Journal of Molecular Microbiology and Biotechnology, 14: 6–15.
4. Argyri, A. A., Zoumpopoulou, G., Karatzas, K. A. G., Tsakalidou, E., Nychas, G. J. E., Panagou, E. Z. and Tassou, C. C. 2013. Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiology, 33: 282-291.
5. Ashmaig, A., Hasan, A. and El Gaali, E. 2009. Identification of lactic acid bacteria isolated from traditional Sudanese fermented camel’s milk (Gariss). African Journal of Microbiology Research, 8: 451-457.
6. Ayantola, K. J. and Oladunmoye, M. K. 2016. Antibacterial Activity of Lactobacillus Species Isolated from Poultry Waste (Droppings) Against Poultry Pathogens. Current Research in Poultry Science, 1: 7-12.
7. Ben Slama, R., Kouidhi, B., Zmantar, T., Chaieb, K. and Bakhrouf, A. 2013. Anti-listerial and Anti-biofilm activities of potential probiotic Lactobacillus Strains Isolated from Tunisian traditional fermented food. Journal of Food Safety, 33: 8-16.
8. Bian, X., Etareri Evivie, S., Muhammad, Z., Luo, G. W., Liang, H. Z., Wang, N. N. and Huo, G. C. 2016. In vitro assessment of the antimicrobial potentials of Lactobacillus helveticus strains isolated from traditional cheese in Sinkiang China against food-borne pathogens. Food & function, 7: 789-797.
9. CLSI. 2013. Performance standards for antimicrobial susceptibility testing; Twenty-Third Informational Supplement. Wayne, PA: Clinical and Laboratory Standards Institute.
10. Collado, M. C., Meriluoto, J. and Salminen, S. 2008. Adhesion and aggregation properties of probiotic and pathogen strains. Eurpean Food Research Technology, 226: 1065–1073.
11. Corcoran, B. M., Stanton, C., Fitzgerald, G. F. and Ross, R. P. 2005. Survival of Lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Applied and Environmental Microbiology, 71: 3060-3067.
12. Dalié, D. K. D., Deschamps, A. M. and Richard-Forget, F. 2010. Lactic acid bacteria – Potential for control of mould growth and mycotoxins: A review. Food Control, 21: 370-380.
13. Del Re, B., Sgorbati, B., Miglioli, M. and Palenzona, D. 2000. Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Letters in Applied Microbiology, 31: 438-442.
14. Ferrando, V., Quiberoni, A., Reinheimer, J. and Suárez, V. 2016. Functional properties of Lactobacillus plantarum strains: A study in vitro of heat stress influence. Food Microbiology, 54: 154-161.
15. Fguiri, I., Ziadi, M., Arroum, S., Khorchani, T., Gancel, F. and Dhulster, P. 2015. Selection of Lactic Acid Bacteria Isolated from Camel Milk According to Production and Technological Criteria. Journal of Chemical, Biological and Physical Sciences, 2: 1660-1671.
16. Garcha, S. and Sharma, N. 2013. Use of combination of bacteriocins from Lactobacillus plantarum MTCC 1407 and Bacillus coagulans MTCC 492. African Journal of Microbiology Research, 47: 5338-5342.
17. Hwanhlem, N., Ivanova, T., Haertlé, T., Jaffrès, E. and Dousset, X. 2017. Inhibition of food-spoilage and foodborne pathogenic bacteria by a nisin Z-producing Lactococcus lactis subsp. lactis KT2W2L. LWT - Food Science and Technology, 82: 170-175.
18. Kos, B., Šušković´, J., Vuković, S., Šimpraga, M., Frece, J. and Matošić, S. 2003. Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. Journal of Applied Microbiology, 94: 981–987.
19. Kruger, M. F., Barbosa, M. D. S., Miranda, A., Landgraf, M., Destro, M. T., Todorov, S. D. and Franco, B. D. G. D. M. 2013. Isolation of bacteriocinogenic strain of Lactococcus lactis subsp. Lactis from rocket salad (Eruca sativa Mill.) and evidences of production of a variant of nisin with modification in the leader-peptide. Food Control, 33: 467-476.
20. Lee, N. K., Han, K. J., Son, S. H., Eom, S. J., Lee, S. K., Paik, H. D. 2015. Multifunctional effect of probiotic Lactococcus lactis KC24 isolated from kimchi. LWT - Food Science and Technology, 64: 1036-1041.
21. Leite, A. M. O., Miguel, M. A. L., Peixoto, R. S., Ruas-Madiedo, P., Paschoalin, V. M. F., Mayo, B. and Delgado, S. 2015. Probiotic potential of selected lactic acid bacteria strains isolated from Brazilian kefir grains. Journal of Dairy Science, 98: 3622–3632.
22. Mahmoudi, I., Ben Moussaa, O., Moulouk Khaldi, T. E., Kebouchib, M., Soligot, C., Le Roux, Y. and Hassouna, M. 2016. Functional in vitro screening of Lactobacillus strains isolated from Tunisian camel raw milk toward their selection as probiotic. Small Ruminant Research, 137: 91-98.
23. Maragkoudakisa, P. A., Zoumpopouloua, G., Miarisa, C., Kalantzopoulosa, G., Potb, B. and Tsakalidoua, E. 2006. Probiotic potential of Lactobacillus strains isolated from dairy products. International Dairy Journal, 16: 189-199.
24. Nami, Y., Abdullah, N., Haghshenas, B., Radiah, D., Rosli, R., Yari Khosroushahi, A. 2014. Probiotic assessment of Enterococcus durans 6HL and Lactococcus lactis 2HL isolated from vaginal microflora. Journal of Medical Microbiology, 63: 1044–1051.
25. Peres, C. M., Alves, M., Hernandez-Mendoza, A., Moreira, L., Silva, S., Bronze, M. R., Vilas-Boas, L., Peres, C. and Malcata, F. X. 2014. Novel isolates of lactobacilli from fermented Portuguese olive as potential probiotics. LWT - Food Science and Technology, 59: 234-246.
26. Soleymanzadeh, N., Mirdamadi, S. and Kianirad, M. 2016. Antioxidant activity of camel and bovine milk fermented by lactic acid bacteria isolated from traditional fermented camel milk (Chal). Dairy Science & Technology, 96: 443–457.
27. Tejero-Sariñena, S., Barlowb, J., Costabile, A., Gibson, G. R. and Rowland, I. 2012. In vitro evaluation of the antimicrobial activity of a range of probiotics against pathogens: Evidence for the effects of organic acids. Anaerobe, 18: 530-538.
28. Todorov, S. D., Botes, M., Guigas, C., Schillinger, U., Wiid, I. and Wachsman, M. B. 2008. Boza, a natural source of probiotic lactic acid bacteria. Journal of Applied Microbiology, 104: 465-477.
29. Vera-Pingitore, E., Jimenez, M.E., Dallagnol, A., Belfiore, C., Fontana, C., Fontana, P., Von Wright, A., Vignolo, G. and Plumed-Ferrer, C. 2016. Screening and characterization of potential probiotic and starter bacteria for plant fermentations. LWT - Food Science and Technology, 71: 288-294.
30. Vijayakumar, M., Ilavenil, S., Kim, D. H., Arasu, M. V., Priya, K., Choi, K. C. 2015. In-vitro assessment of the probiotic potential of Lactobacillus plantarum KCC-24 isolated from Italian rye-grass (Lolium multiflorum) forage. Anaerobe, 32: 90-97.
31. Zhoua, J. S., Pillidgec, C. J., Gopalc, P. K. and Gill, H. S. 2005. Antibiotic susceptibility profiles of new probiotic Lactobacillus and Bifidobacterium strains. International Journal of Food Microbiology, 98: 211 – 217.