Estimation of Phytofiltration Potential for Cu and Zn and Relative Growth Response of Azolla japonica and Azolla Pinnata

Authors
Vegetation Management Engineering Lab., Department of Environmental Management Engineering, Graduate School of Environmental & Life Science, Okayama University, Okayama, Japan.
Abstract
Microcosm experiments were conducted under controlled environmental conditions in order to estimate growth response and phytoremediation ability of A. japonica and A. pinnata. Plants were exposed to solutions of different Cu-concentrations [Cu] (0, 1, 2, 5 and 7 mg L-1) and Zn-concentrations [Zn] (0, 0.5, 1, 2 and 4 mg L-1) under different incubation periods (0, 3, 6, and 12 days) along with control treatments. Lower metal concentrations [< 2 mg L-1 (Cu) and < 1 mg L-1 (Zn)] enhanced plant growth; however, growth was significantly inhibited at higher concentrations during Longer Incubation Periods (LIPs). Azolla species showed substantial metal removal capacity (on an average, Removal efficiency> 80% for Cu and > 60% for Zn during LIPs). The higher the metal concentrations with LIPs, the higher the metal removal amounts. Plant`s exposure to high (Cu) and (Zn) during LIPs showed changes in color and detachment of the roots that might result in plant death due to phytotoxicity effect. Highly significant relationships (r= 0.91** & 0.82** for Cu and r= 0.93** & 0.92** for Zn in case of A. pinnata and A. japonica, respectively) between metal removal amounts and metal concentrations in biomass indicated that phytoaccumulation was the possible mechanism for phytoremediation because the metals removed from solutions were actually accumulated into the plant`s biomass. The high value of bioconcentration factor indicated that Azolla species were hyperaccumulators, and can be deployed effectively for phytofiltartion of Cu and Zn.

Keywords

Subjects


1. Abhilash, P. C., Pandey, V. C., Srivastva, P., Rakesh, P. S., Chandran, S., Singh, N. and Thomas, A. P. 2009. Phytofiltration of Cadmium from Water by Limnocharis flava (L.) Buchenau Grown in Free Floating Culture Medium. J. Hazard. Mater., 170: 791-797.
2. Arora, A. and Singh, P. K. 2003. Comparison of Biomass Productivity and Nitrogen Fixing Potential of Azolla spp. Biomass Bioenerg., 24: 175-178.
3. Belouchrani, A. S., Mameri, N., Abdi, N., Grib, H., Lounici, H. and Drouiche, N. 2016. Phytoremediation of Soil Contaminated with Zn Using Canola (Brassica napus L.). Ecol. Eng., 95: 43-49.
4. Bozzini, A., De Luca, P., Moretti, A., Sabato, S. and Gigliano, G. S. 1982. Comparative Study of Six Species of Azolla in Relation to Their Utilization as Green Manure for Rice. In: “Developments of Plant and Soil Sciences: Practical application of Azolla for Rice Production”, (Eds.): Silver, W. S. and Schröder, E. C. Martinuns Nijhoof/Dr W. Junk Publishers, Dordrecht. 13:125-132.
5. Demim, S., Drouiche, N., Aouabed, A. and Semsari, S. 2013. CCD Study on the Ecophysiological Effects of Heavy Metals on Lemna gibba. Ecol. Eng., 57: 302-313.
6. Demim, S., Drouiche, N., Aouabed, A., Benayad , T., Couderchet, M. and Semsari, S. 2014. Study of Heavy Metal Removal from Heavy Metal Mixture Using the CCD Method. J. Ind. Eng. Chem., 20: 512-520.
7. Ebbs, S. D., Lasat, M. M., Brady, D. J., Cornish, J., Gordon, R., and Kochian, L. V. 1997. Phytoextraction of Cadmium and Zinc from a Contaminated Site. J. Environ. Qual., 26: 1424-1430.
8. Hagemeyer, J. 1999. Ecophysiology of Plant Growth under Heavy Metal Stress. In: “Heavy Metal Stress in Plants”, (Eds.): Prasad, M. N. V. and Hagemeyer, J.. Springer-Verlag, Heidelberg, Berlin, PP. 157-181.
9. Hasan, S. H., Talat, M. and Rai, S. 2007. Sorption of Cadmium and Zinc from Aqueous Solution by Water Hyacinth (Eichchorria crassipes). Biores Technol., 98: 918-928.
10. Jain, S. K., Vasudevan, P. and Jha, N. K. 1990. Azolla pinnata R. Br. and Lemna minor L. for Removal of Lead and Zinc from Polluted Water. Water Res., 24: 177-183.
11. Li, Y., Luo, J., Yu, J., Xia, L., Zhou, C., Cai, L. and Ma, X. 2018. Improvement of the Phytoremediation Efficiency of Neyraudia reynaudiana for Lead-Zinc Mine-Contaminated Soil under the Interactive Effect of Earth Worms and EDTA. Sci. Rep., 8: Article No. 6417.
12. Lizieri, C., Kuki, K. N. and Aguiar, R. 2012. The Marphopysiological Responses of Free Floating Aquatic Macrophytes to a Supra-Optimal Supply of Manganese. Water Air Soil Poll., 223: 2807-2820.
13. Llorens, N., Arola, L., Blade, C. and Mas, A. 2000. Effects of Copper Exposure upon Nitrogen Metabolism in Tissue Cultured Vitis vinifera. Plant Sci., 160: 159-163.
14. Madeira, P. T., Center, T. D., Coetzee, J. A., Pemberton, R. W., Purcell, M. F. and Hill, M. P. 2013. Identity and Origins of Introduced and Native Azolla Species in Florida. Aquat. Bot., 111: 9-15.
15. Mcgrath, S. P. and Zhao, F. -J. 2003. Phytoextraction of Metals and Metalloids from Contaminated Soils. Curr. Opin. Biotech., 14: 277-282.
16. Miretzky, P., Saralegui, A. and Cirelli, A. F. 2004. Aquatic Macrophytes Potential for the Simultaneous Removal of Heavy Metals (Buenos Aires, Argentina). Chemosphere, 57: 997-1005.
17. Mishra, V. K. and Tripathi, B. D. 2009. Accumulation of Chromium and Zinc from Aqueous Solutions Using Water Hyacinth (Eichhornia crassipes). J. Hazard Mater., 164: 1059-1063.
18. Mishra, V. K., Upadhyay, A. R., Pandey, S. K. and Tripathi, B. D. 2008. Heavy Metal Pollution Induced Due to Coal Mining Effluent on Surrounding Aquatic Ecosystem and Its Management through Naturally Occurring Aquatic Macrophytes. Bioresour. Technol., 99: 930-936.
19. Neilson, S. and Rajakaruna, N. 2015. Phytoremediation of Agricultural Soils: Using Plants to Clean Metal-Contaminated Arable Land. In: “Phytoremediation”, (Eds.): Ansari, A., Gill, S., Gill, R., Lanza, G. and Newman, L.. Springer, Cham: PP. 159-168.
20. Pandey, V. C. 2012. Phytoremediation of Heavy Metals from Fly Ash Pond by Azolla caroliniana. Ecotox. Environ. Safe., 82: 8-12.
21. Pandey, V. C. and Singh, K. 2011. Is Vigna radiata Suitable for the Revegetation of Fly Ash Landfills? Ecol. Eng., 37: 2105-2106.
22. Pereira, A. L., Martins, M., Oliveira, M. M. and Carrapiço, F. 2011. Morphological and Genetic Diversity of the Family Azollaceae Inferred from Vegetative Characters and RAPD Markers. Plant Syst. Evo., 297: 213-226.
23. Pilon-Smits, E. 2005. Phytoremediation. Annu. Rev. Plant Biol., 56: 15-39.
24. Rai, U. N. and Chandra, P. 1992. Accumulation of Copper, Lead, Manganese and Iron by Field Population of Hydrodictyon reticulatum Lagerheim. Sci. Total Environ., 116: 203-211.
25. Rai, U. N., Tripathi, R. D., Vaypayee, P., Vidyanath, J. H. A. and Ali, M. B. 2002. Bioaccumulation of Toxic Heavy Metals (Cr, Cd, Pb and Cu) by Seeds of Euryale ferox (Makhana). Chemosphere, 46: 267-272.
26. Sela, M., Gary, J. and Tel-Or, E. 1989. Accumulation and the Effect of Heavy Metals on the Water fern Azolla filliculoides. New Phtol., 112: 7-12.
27. Singh , S. S., Mishra, A. K. and Upadhyay, R. S. 2010. Potentiality of Azolla as a Suitable P-biofertilizer under Salinity through Acid Phosphatase Activity. Ecol. Eng., 36: 1076-1082.
28. Singh, O. V., Labana, S., Pandey, G., Budhiraja, R. and Jain, R. K. 2003. Phytoremediation: An Overview of Metallic Ion Decontamination from Soil. Appl. Microbiol. Biot., 61: 405-412.
29. Sood, A., Uniyal, P. L., Prasanna, R. and Ahluwalia, A. S. 2012. Phytoremediation Potential of Aquatic Macrophytes, Azolla. Ambio, 41: 122-137.
30. Upadhyay, A. R., Mishra, V. K., Pandey, S. K. and Tripathi, B. D. 2007. Biofiltration of Secondary Treated Municipal Waste Water in a Tropical City. Ecol. Eng., 30: 9-15.
31. Valderrama, A., Tapia, J., Peňailillo, P. and Carvajal, D. E. 2013. Water Phytoremediation of Cadmium and Copper using Azolla filiculoides Lam. in a Hydroponic System. Water Environ. J., 27:293-300.
32. Wagner, G. M. 1997. Azolla: A Review on Its Biology and Utilization. Bot. Rev., 63: 1-26.
33. Xue, P. Y., Li, G. X., Liu, W. J. and Yan, C. Z. 2010. Copper Uptake and Translocation in Submerged Aquatic Plant Hydrilla verticillata (L.F.) Royale. Chemosphere, 81: 1098-1103.
34. Zabihi, M., Ahmadpour, A. and Haghighi, A. A. 2009. Removal of Mercury from Water by Carbonaceous Sorbents Derived from Walnut Shell. J. Hazard. Mater., 167: 230-236.
35. Zayed, A., Gowthaman, S. and Terry, N. 1998. Phytoaccumulation of Trace Elements by Wetland Plants: I. Duckweed. J. Environ. Qual., 27: 715-721.
36. Zhao, M., Duncan, J. R. and Van Hille, R. P. 1999. Removal and Recovery of Zinc from Solution and Electroplating Effluent Using Azolla Filiculoides. Wat. Res., 33: 1516-1522.
37. Zhu, Y. I., Zayed, A., Qian, J. H., Souza, M. and Terry, N. 1999. Phytoremediation of Trace Elements by Wetland Plants: II. Water Hyacinth. J. Environ. Qual., 28: 339-344.
38. Zouboulis, A. I., Loukidou, M. X. and Matisx, M. X. 2004. Biosorption of Toxic Metals from Aqueous Solutions by Bacteria Strains Isolated from Metal-Polluted Soils. Process Biochem., 39: 909-916.