1. Abhilash, P. C., Pandey, V. C., Srivastva, P., Rakesh, P. S., Chandran, S., Singh, N. and Thomas, A. P. 2009. Phytofiltration of Cadmium from Water by Limnocharis flava (L.) Buchenau Grown in Free Floating Culture Medium. J. Hazard. Mater., 170: 791-797.
2. Arora, A. and Singh, P. K. 2003. Comparison of Biomass Productivity and Nitrogen Fixing Potential of Azolla spp. Biomass Bioenerg., 24: 175-178.
3. Belouchrani, A. S., Mameri, N., Abdi, N., Grib, H., Lounici, H. and Drouiche, N. 2016. Phytoremediation of Soil Contaminated with Zn Using Canola (Brassica napus L.). Ecol. Eng., 95: 43-49.
4. Bozzini, A., De Luca, P., Moretti, A., Sabato, S. and Gigliano, G. S. 1982. Comparative Study of Six Species of Azolla in Relation to Their Utilization as Green Manure for Rice. In: “Developments of Plant and Soil Sciences: Practical application of Azolla for Rice Production”, (Eds.): Silver, W. S. and Schröder, E. C. Martinuns Nijhoof/Dr W. Junk Publishers, Dordrecht. 13:125-132.
5. Demim, S., Drouiche, N., Aouabed, A. and Semsari, S. 2013. CCD Study on the Ecophysiological Effects of Heavy Metals on Lemna gibba. Ecol. Eng., 57: 302-313.
6. Demim, S., Drouiche, N., Aouabed, A., Benayad , T., Couderchet, M. and Semsari, S. 2014. Study of Heavy Metal Removal from Heavy Metal Mixture Using the CCD Method. J. Ind. Eng. Chem., 20: 512-520.
7. Ebbs, S. D., Lasat, M. M., Brady, D. J., Cornish, J., Gordon, R., and Kochian, L. V. 1997. Phytoextraction of Cadmium and Zinc from a Contaminated Site. J. Environ. Qual., 26: 1424-1430.
8. Hagemeyer, J. 1999. Ecophysiology of Plant Growth under Heavy Metal Stress. In: “Heavy Metal Stress in Plants”, (Eds.): Prasad, M. N. V. and Hagemeyer, J.. Springer-Verlag, Heidelberg, Berlin, PP. 157-181.
9. Hasan, S. H., Talat, M. and Rai, S. 2007. Sorption of Cadmium and Zinc from Aqueous Solution by Water Hyacinth (Eichchorria crassipes). Biores Technol., 98: 918-928.
10. Jain, S. K., Vasudevan, P. and Jha, N. K. 1990. Azolla pinnata R. Br. and Lemna minor L. for Removal of Lead and Zinc from Polluted Water. Water Res., 24: 177-183.
11. Li, Y., Luo, J., Yu, J., Xia, L., Zhou, C., Cai, L. and Ma, X. 2018. Improvement of the Phytoremediation Efficiency of Neyraudia reynaudiana for Lead-Zinc Mine-Contaminated Soil under the Interactive Effect of Earth Worms and EDTA. Sci. Rep., 8: Article No. 6417.
12. Lizieri, C., Kuki, K. N. and Aguiar, R. 2012. The Marphopysiological Responses of Free Floating Aquatic Macrophytes to a Supra-Optimal Supply of Manganese. Water Air Soil Poll., 223: 2807-2820.
13. Llorens, N., Arola, L., Blade, C. and Mas, A. 2000. Effects of Copper Exposure upon Nitrogen Metabolism in Tissue Cultured Vitis vinifera. Plant Sci., 160: 159-163.
14. Madeira, P. T., Center, T. D., Coetzee, J. A., Pemberton, R. W., Purcell, M. F. and Hill, M. P. 2013. Identity and Origins of Introduced and Native Azolla Species in Florida. Aquat. Bot., 111: 9-15.
15. Mcgrath, S. P. and Zhao, F. -J. 2003. Phytoextraction of Metals and Metalloids from Contaminated Soils. Curr. Opin. Biotech., 14: 277-282.
16. Miretzky, P., Saralegui, A. and Cirelli, A. F. 2004. Aquatic Macrophytes Potential for the Simultaneous Removal of Heavy Metals (Buenos Aires, Argentina). Chemosphere, 57: 997-1005.
17. Mishra, V. K. and Tripathi, B. D. 2009. Accumulation of Chromium and Zinc from Aqueous Solutions Using Water Hyacinth (Eichhornia crassipes). J. Hazard Mater., 164: 1059-1063.
18. Mishra, V. K., Upadhyay, A. R., Pandey, S. K. and Tripathi, B. D. 2008. Heavy Metal Pollution Induced Due to Coal Mining Effluent on Surrounding Aquatic Ecosystem and Its Management through Naturally Occurring Aquatic Macrophytes. Bioresour. Technol., 99: 930-936.
19. Neilson, S. and Rajakaruna, N. 2015. Phytoremediation of Agricultural Soils: Using Plants to Clean Metal-Contaminated Arable Land. In: “Phytoremediation”, (Eds.): Ansari, A., Gill, S., Gill, R., Lanza, G. and Newman, L.. Springer, Cham: PP. 159-168.
20. Pandey, V. C. 2012. Phytoremediation of Heavy Metals from Fly Ash Pond by Azolla caroliniana. Ecotox. Environ. Safe., 82: 8-12.
21. Pandey, V. C. and Singh, K. 2011. Is Vigna radiata Suitable for the Revegetation of Fly Ash Landfills? Ecol. Eng., 37: 2105-2106.
22. Pereira, A. L., Martins, M., Oliveira, M. M. and Carrapiço, F. 2011. Morphological and Genetic Diversity of the Family Azollaceae Inferred from Vegetative Characters and RAPD Markers. Plant Syst. Evo., 297: 213-226.
23. Pilon-Smits, E. 2005. Phytoremediation. Annu. Rev. Plant Biol., 56: 15-39.
24. Rai, U. N. and Chandra, P. 1992. Accumulation of Copper, Lead, Manganese and Iron by Field Population of Hydrodictyon reticulatum Lagerheim. Sci. Total Environ., 116: 203-211.
25. Rai, U. N., Tripathi, R. D., Vaypayee, P., Vidyanath, J. H. A. and Ali, M. B. 2002. Bioaccumulation of Toxic Heavy Metals (Cr, Cd, Pb and Cu) by Seeds of Euryale ferox (Makhana). Chemosphere, 46: 267-272.
26. Sela, M., Gary, J. and Tel-Or, E. 1989. Accumulation and the Effect of Heavy Metals on the Water fern Azolla filliculoides. New Phtol., 112: 7-12.
27. Singh , S. S., Mishra, A. K. and Upadhyay, R. S. 2010. Potentiality of Azolla as a Suitable P-biofertilizer under Salinity through Acid Phosphatase Activity. Ecol. Eng., 36: 1076-1082.
28. Singh, O. V., Labana, S., Pandey, G., Budhiraja, R. and Jain, R. K. 2003. Phytoremediation: An Overview of Metallic Ion Decontamination from Soil. Appl. Microbiol. Biot., 61: 405-412.
29. Sood, A., Uniyal, P. L., Prasanna, R. and Ahluwalia, A. S. 2012. Phytoremediation Potential of Aquatic Macrophytes, Azolla. Ambio, 41: 122-137.
30. Upadhyay, A. R., Mishra, V. K., Pandey, S. K. and Tripathi, B. D. 2007. Biofiltration of Secondary Treated Municipal Waste Water in a Tropical City. Ecol. Eng., 30: 9-15.
31. Valderrama, A., Tapia, J., Peňailillo, P. and Carvajal, D. E. 2013. Water Phytoremediation of Cadmium and Copper using Azolla filiculoides Lam. in a Hydroponic System. Water Environ. J., 27:293-300.
32. Wagner, G. M. 1997. Azolla: A Review on Its Biology and Utilization. Bot. Rev., 63: 1-26.
33. Xue, P. Y., Li, G. X., Liu, W. J. and Yan, C. Z. 2010. Copper Uptake and Translocation in Submerged Aquatic Plant Hydrilla verticillata (L.F.) Royale. Chemosphere, 81: 1098-1103.
34. Zabihi, M., Ahmadpour, A. and Haghighi, A. A. 2009. Removal of Mercury from Water by Carbonaceous Sorbents Derived from Walnut Shell. J. Hazard. Mater., 167: 230-236.
35. Zayed, A., Gowthaman, S. and Terry, N. 1998. Phytoaccumulation of Trace Elements by Wetland Plants: I. Duckweed. J. Environ. Qual., 27: 715-721.
36. Zhao, M., Duncan, J. R. and Van Hille, R. P. 1999. Removal and Recovery of Zinc from Solution and Electroplating Effluent Using Azolla Filiculoides. Wat. Res., 33: 1516-1522.
37. Zhu, Y. I., Zayed, A., Qian, J. H., Souza, M. and Terry, N. 1999. Phytoremediation of Trace Elements by Wetland Plants: II. Water Hyacinth. J. Environ. Qual., 28: 339-344.
38. Zouboulis, A. I., Loukidou, M. X. and Matisx, M. X. 2004. Biosorption of Toxic Metals from Aqueous Solutions by Bacteria Strains Isolated from Metal-Polluted Soils. Process Biochem., 39: 909-916.