Effect of CO2 Enrichment on Gas Exchanges, Biochemical Traits, and Minituber Yield in Potato (Solanum tuberosum L.) Cultivars

Authors
1 Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Islamic Republic of Iran.
2 Research Canter of Plant Sciences, Ferdowsi University of Mashhad, Islamic Republic of Iran.
3 Department of Horticultural Science, University of Minnesota, 305 Alderman Hall, St. Paul, MN 55108, USA.
Abstract
Micro-propagated potato plantlets (cvs. Agria and Fontane) were grown in growth chambers under controlled conditions to determine the effect of different levels of CO2 concentrations (400 vs. 800 µmol mol−1) on physiological and biochemical traits and yield of minitubers, at the Ferdowsi University of Mashhad, in 2015. Irrespective of the cultivar, the elevated CO2 significantly increased Net photosynthesis (Np) and leaf Dark Respiration (RD) compared to the control at 34 and 57 days after transplanting. Higher Np under the elevated CO2 resulted in a higher accumulation of leaflet starch and soluble sugar content. The elevated CO2, compared to the ambient, induced allocation of more dry matter to the underground parts, especially tubers. CO2 Enrichment did not significantly affect the number of tubers and mean tuber weight, however, the elevated CO2 increased yield of Agria and Fontane by 17 and 39%, respectively. The yield of Fontane was increased more than Agria when exposed to elevated CO2, mainly due to greater mean tuber weight than tuber number. The number of large size tubers increased under elevated CO2. The results showed that the greater mean tuber weight might affect tuber yield more than the number of tubers. Our findings suggest that rising levels of CO2 in minituber production systems could be beneficial to improve productivity and tuber yield.

Keywords

Subjects


1. Ahmadi Lahijani, M. J., Kafi, M., Nezami, A., Nabati, J. and Erwin, J. 2018. Effect of 6-Benzylaminopurine and Abscisic Acid on Gas Exchange, Biochemical Traits, and Minituber Production of Two Potato Cultivars (Solanum tuberosum L.). J. Agri. Sci. Tech., 20(1): 129-139.
2. Aien, A., Pal, M., Khetarpal, S. and Kumar Pandey, S. 2014. Impact of Elevated Atmospheric CO2 Concentration on the Growth, and Yield in Two Potato Cultivars. J. Agr. Sci. Tech., 16: 1661-1670.
3. Ainsworth, E. A. and Lemonnier, P. 2018. Phloem Function: A Key to Understanding and Manipulating Plant Responses to Rising Atmospheric [CO2]? Curr. Opin. Plant Biol., 43: 50-56.
4. Aranjuelo, I., Cabrera-Bosquet, L., Morcuende, R., Avice, J. C., Nogués, S., Araus, J. L., Martínez-Carrasco, R. and Pérez, P. 2011. Does Ear C Sink Strength Contribute to Overcoming Photosynthetic Acclimation of Wheat Plants Exposed to Elevated CO2? J. Exp. Bot., 62(11): 3957-3969. doi:10.1093/jxb/err095
5. Aranjuelo, I., Irigoyen, J. J., Perez, P., Martinez-Carrasco, R. and Sanchez-Diaz, M. 2006. Response of Nodulated Alfalfa to Water Supply, Temperature and Elevated CO2: Productivity and Water Relations. Environ. Exp. Bot., 55(1): 130-141.
6. Aranjuelo, I., Pérez, P., Hernández, L., Irigoyen, J. J., Zita, G., Martínez‐Carrasco, R. and Sánchez‐Díaz, M. 2005. The Response of Nodulated Alfalfa to Water Supply, Temperature and Elevated CO2: Photosynthetic Downregulation. Physiol. Plant., 123(3): 348-358.
7. Chen, C. -T. and Setter, T. L. 2012. Response of Potato Dry Matter Assimilation and Partitioning to Elevated CO2 at Various Stages of Tuber Initiation and Growth. Environ. Exp. Bot., 80: 27-34.
8. Cong, B. and Tanksley, S. D. 2006. FW2.2 and Cell Cycle Control in Developing Tomato Fruit: A Possible Example of Gene Co-Option in the Evolution of a Novel Organ. Plant Mol. Biol., 62(6): 867-880.
9. Craigon, J., Fangmeier, A., Jones, M., Donnelly, A., Bindi, M., De Temmerman, L., Persson, K. and Ojanpera, K. 2002. Growth and Marketable-Yield Responses of Potato to Increased CO2 and Ozone. Eur. J. Agron., 17(4): 273-289.
10. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. and Smith, F. 1956. Colorimetric Method for Determination of Sugars and Related Substances. Anal. chem., 28(3): 350-356.
11. FAOSTAT. 2014. Agriculture Organization of the United Nations. Rome, (17.05.14).
12. Finnan, J., Donnelly, A., Jones, M. and Burke, J. 2005. The Effect of Elevated Levels of Carbon Dioxide on Potato Crops: A Review. J. Crop Improv., 13(1-2): 91-111.
13. Finnan, J. M., Donnelly, A., Burke, J. I. and Jones, M. B. 2002. The Effects of Elevated Concentrations of Carbon Dioxide and Ozone on Potato (Solanum tuberosum L.) Yield. Agr. Ecosyst. Environ., 88(1): 11-22.
14. Fleisher, D., Wang, Q., Timlin, D., Chun, J. -A. and Reddy, V. 2013. Effects of Carbon Dioxide and Phosphorus Supply on Potato Dry Matter Allocation and Canopy Morphology. J. Plant Nut., 36(4): 566-586.
15. Fleisher, D. H., Timlin, D. J. and Reddy, V. 2008a. Elevated Carbon Dioxide and Water Stress Effects on Potato Canopy Gas Exchange, Water Use, and Productivity. Agr. Forest Meteorol., 148(6): 1109-1122.
16. Fleisher, D. H., Timlin, D. J. and Reddy, V. R. 2008b. Interactive Effects of Carbon Dioxide and Water Stress on Potato Canopy Growth and Development. Agron. J., 100(3): 711-719.
17. Gomez-Casanovas, N., Blanc-Betes, E., Gonzalez-Meler, M. A. and Azcon-Bieto, J. 2007. Changes in Respiratory Mitochondrial Machinery and Cytochrome and Alternative Pathway Activities in Response to Energy Demand Underlie the Acclimation of Respiration to Elevated CO2 in the Invasive Opuntia Ficus-Indica. Plant Physiol., 145(1): 49-61.
18. Gonzàlez‐Meler, M. A., Blanc‐Betes, E., Flower, C. E., Ward, J. K. and Gomez‐Casanovas, N. 2009. Plastic and Adaptive Responses of Plant Respiration to Changes in Atmospheric CO2 Concentration. Physiol. Plant., 137(4): 473-484.
19. Gray, S. B. and Brady, S. M. 2016. Plant Developmental Responses to Climate Change. Dev. Biol., 419(1): 64-77.
20. Hoagland, D. R. and Arnon, D. I. 1950. The Water-Culture Method for Growing Plants without Soil. Circular. California Agric. Exp. Station, 347(2nd Edit).
21. Högy, P. and Fangmeier, A. 2009. Atmospheric CO2 Enrichment Affects Potatoes: 1. Aboveground Biomass Production and Tuber Yield. Eur. J. Agron., 30(2): 78-84.
22. Horiguchi, G., Ferjani, A., Fujikura, U. and Tsukaya, H. 2006. Coordination of Cell Proliferation and Cell Expansion in the Control of Leaf Size in Arabidopsis thaliana. J. Plant Res., 119(1): 37-42.
23. Katny, M. A. C., Hoffmann-Thoma, G., Schrier, A. A., Fangmeier, A., Jäger, H. -J. and van Bel, A. J. 2005. Increase of Photosynthesis and Starch in Potato under Elevated CO2 Is Dependent on Leaf Age. J. Plant Physiol., 162(4): 429-438.
24. Kimball, B., Kobayashi, K. and Bindi, M. 2002. Responses of Agricultural Crops to Free-Air CO2 Enrichment. Adv. Agron., 77: 293-368.
25. Kloosterman, B., Vorst, O., Hall, R. D., Visser, R. G. and Bachem, C. W. 2005. Tuber on a Chip: Differential Gene Expression during Potato Tuber Development. Plant Biotech. J.l, 3(5): 505-519.
26. Komor, E., Orlich, G., Weig, A. and Köckenberger, W. 1996. Phloem Loading—Not Metaphysical, Only Complex: Towards a Unified Model of Phloem Loading. J. Exp. Bot., 47(Special Issue): 1155-1164.
27. Lawlor, D. and Mitchell, R. 1991. The Effects of Increasing CO2 on Crop Photosynthesis and Productivity: A Review of Field Studies. Plant Cell Environ., 14(8): 807-818.
28. Lawson, T., Craigon, J., Black, C., Colls, J., Tulloch, A. -M. and Landon, G. 2001. Effects of Elevated Carbon Dioxide and Ozone on the Growth and Yield of Potatoes (Solanum tuberosum) Grown in Open-Top Chambers. Environ. Pollut., 111(3): 479-491.
29. Leakey, A. D., Xu, F., Gillespie, K. M., McGrath, J. M., Ainsworth, E. A. and Ort, D. R. 2009. Genomic Basis for Stimulated Respiration by Plants Growing under Elevated Carbon Dioxide. Proc. Nat. Acad. Sci., 106(9): 3597-3602.
30. Li, X., Zhang, G., Sun, B., Zhang, S., Zhang, Y., Liao, Y., Zhou, Y., Xia, X., Shi, K. and Yu, J. 2013. Stimulated Leaf Dark Respiration in Tomato in an Elevated Carbon Dioxide Atmosphere. Sci. Rep., 3:3433: 1-8. doi:10.1038/srep03433
31. Long, S. P., Ainsworth, E. A., Rogers, A. and Ort, D. R. 2004. Rising Atmospheric Carbon Dioxide: Plants FACE the Future. Annu. Rev. Plant Biol., 55: 591-628.
32. Ramawat, K. G. and Merillon, J. -M. 2013. Bulbous Plants: Biotechnology. CRC Press, USA. 450PP.
33. 33. Reddy, A. R., Rasineni, G. K. and Raghavendra, A. S. 2010. The Impact of Global Elevated CO2 Concentration on Photosynthesis and Plant Productivity. Curr. Sci., 99(1): 46-57.
34. Schlegel, H. G. 1956. Die Verwertung Orgngischer Souren Durch Chlorella Lincht. Planta., 47: 510-526.
35. Shahkoomahally, E. and Shahkoomahally, S. 2017. Investigating of N and K Fertilizers on Yield and Components of Soybean [Glycine max (L.) Merr.]. J. Agri. Sci., 9(10): 85.
36. Sharma, A. K. and Pandey, K. 2013. Potato Mini-Tuber Production through Direct Transplanting of In Vitro Plantlets in Green or Screen Houses: A Review. Potato J., 40(2): 95-103.
37. Skraly, F. A., Ambavaram, M. M., Peoples, O. and Snell, K. D. 2018. Metabolic Engineering to Increase Crop Yield: From Concept to Execution. Plant Sci., 273:23-33. doi:10.1016/j.plantsci.2018.03.011
38. Struik, P. C. 2007. Above-Ground and Below-Ground Plant Development. In: "Potato Biology and Biotechnology: Advances and Perspectives", (Ed.): Verugdenhil, D. Elsevier, Amsterdam, PP. 219–236.
39. Struik, P. C. and Wiersema, S. G. 2012. Seed Potato Technology. Wageningen Press, Wageningen, 383 PP.
40. Wang, X., Roger Anderson, O. and Griffin, K. L. 2004. Chloroplast Numbers, Mitochondrion Numbers and Carbon Assimilation Physiology of Nicotiana sylvestris as Affected by CO2 Concentration. Environ. Exp. Bot., 51: 21-31.