Differential Expression Profiles of Tomato miRNAs Induced by Tobacco Mosaic Virus

Authors
1 Plant Protection and Bimolecular Diagnosis Department, ALCRI, City of Scientific Research and Technological Applications, 21934, Alexandria, Egypt.
2 Plant RNAi Biology Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India.
Abstract
Plant microRNAs (miRNAs) play important roles in plant development and responses to biotic and abiotic stress. Recently, there is clear evidence that miRNAs are involved in host-virus interactions. By using stem-loop RT-PCR, an expression levels change of thirteen miRNA belonging to six miRNA families targeting leaf development and morphogenesis were analyzed upon Tobacco Mosaic Virus (TMV)-tomato infection. Compared to mock plants, significant changes in relative expression levels of nine miRNAs were observed. The miR319c-5p showed the highest statistically significant increase in accumulation at 15 days post-inoculation. At all time points tested, miR159, miR164a-3p, miR164a-5p, miR166c-5p and miR319c-5p were up-regulated while miR160, miR319a, miR319b, miR319c-3p were down-regulated in most cases. Our data could provide new insights into the role of miRNAs in tomato-TMV interaction and in developing efficient strategies for improving tomato resistance against viral infection.

Keywords

Subjects


1. Aukerman, M. J. and Sakai, H. 2003. Regulation of Flowering Time and Floral Organ Identity by a microRNA and Its APETALA2-Like Target Genes. Plant Cell, 15: 2730-2741.
2. Bartel, D. P. 2004. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell, 116: 281-297.
3. Bazzini, A. A., Hopp, H. E., Beachy, R. N. and Asurmendi, S. 2007. Infection and Coaccumulation of Tobacco Mosaic Virus Proteins Alter microRNA Levels, Correlating with Symptom and Plant Development. Proc. Natl. Acad. Sci. USA, 104: 12157–12162.
4. Bazzini, A.A., Manacorda, C.A., Tohge, T., Conti, G., Rodriguez, M. C., Nunes-Nesi, A., Villanueva, S., Fernie, A. R., Carrari, F. and Asurmendi, S. 2011. Metabolic and miRNA Profiling of TMV Infected Plants Reveals Biphasic Temporal Changes. PLoS ONE, 6(12): e28466. doi:10.1371/journal.pone.0028466
5. Chen, X. 2004. AmicroRNA as a Translational Repressor of APETALA2 in Arabidopsis Flower Development. Science, 303: 2022–2025.
6. Chomczynski, P. and Sacchi, N. 2006. The Single-Step Method of RNA Isolation by Acid Guanidinium Thiocyanate-Phenol-Chloroform Extraction: Twenty-Something Years on. Nat. Protoc., 1: 581-585.
7. Cillo, F., Mascia, T., Pasciuto, M. M. and Gallitelli, D. 2009. Differential Effects of Mild and Severe Cucumber Mosaic Virus Strains in the Perturbation of MicroRNA Regulated Gene Expression in Tomato Map to the 39 Sequence of RNA 2. Mol. Plant Microbe Interact., 22: 1239-1249.
8. Debernardi, J. M., Rodriguez, R. E., Mecchia, M. A. and Palatnik, J. F. 2012. Functional Specialization of the Plant miR396 Fulfill Work through Distinct microRNA-target Interactions. PLoS Genet., 8: e1002419.
9. Giovannoni, J. J. 2007. Fruit Ripening Mutants Yield Insights into Ripening Control. Curr Opin Plant Biol., 10: 283–289.
10. Guo, C., Li, L., Wang, X. and Liang, C. 2015. Alterations in siRNA and miRNA Expression Profiles Detected by Deep Sequencing of Transgenic Rice with SiRNA-Mediated Viral Resistance. PLoS ONE, 10(1): e0116175. doi:10.1371/journal.pone.0116175.
11. Guo, H. S., Xie, Q., Fei, J. F. and Chua, N. H. 2005. MicroRNA Directs mRNA Cleavage of the Transcription Factor NAC1 to Down-regulate Auxin Signals for Arabidopsis Lateral Root Development. Plant Cell, 17: 1376-1386.
12. Havelda, Z., Varallyay, E., Valoczi, A. and Burgyan. J. 2008. Plant Virus Infection-Induced Persistent Host Gene Downregulation in Systemically Infected Leaves. Plant J., 55: 278–288.
13. Huang, J., Yang, M. and Zhang, X. 2016. The Function of Small RNAs in Plant Biotic Stress Response. J. Integr. Plant Biol., 58: 312–327.
14. Juarez, M. T., Kui, J. S., Thomas, J., Heller, B. A. and Timmermans, M. C. 2004. MicroRNA Mediated Repression of Rolled Leaf1 Specifies Maize Leaf Polarity. Nature, 428: 84-88.
15. Khraiwesh, B., Zhu, J. K. and Zhu, J. 2012. Role of miRNAs and siRNAs in Biotic and Abiotic Stress Responses of Plants. Biochim. Biophys. Acta., 1819: 137–148.
16. Kramer, M. F. 2011. Stem-Loop RT-qPCR for miRNAs. Curr. Protoc. Mol. Biol., Chapter 15: Unit 15 10. doi: 10.1002/0471142727.mb1510s95.
17. Letscher, B., Adam, G., Lesemann, D., Willingmann, P. and Heinze, P. 2002. Detection and Differentiation of Serologically Cross-Reacting Tobamoviruses of Economical Importance by RT-PCR and RT-PCR-RFLP. J. Virol. Methods, 106(1): 1-10.
18. Li, F., Pignatta, D., Bendix, C., Brunkard, J. O., Cohn, M. M., Tung, J., Sun, H., Kumar, P. and Baker, B. 2012. MicroRNA Regulation of Plant Innate Immune Receptors. Proc. Natl. Acad. Sci. USA, 109: 1790–1795.
19. Luan, Y., Cui, J., Zhai, J., Li, J., Han, L. and Meng, J. 2015. High-Throughput Sequencing Reveals Differential Expression of miRNAs in Tomato Inoculated with Phytophthora infestans. Planta, 241: 1405–1416.
20. Mallory, A. C., Bartel, D. P. and Bartel, B. 2005. MicroRNA-Directed Regulation of Arabidopsis AUXIN RESPONSE FACTOR17 Is Essential for Proper Development and Modulates Expression of Early Auxin Response Genes. Plant Cell, 17:1360-1375.
21. Mallory, A. C., Reinhart, B. J., Jones-Rhoades, M. W., Tang, G., Zamore, P. D., Barton, M. K. and Bartel, D. P. 2004. MicroRNA Control of PHABULOSA in Leaf Development: Importance of Pairing to the MicroRNA 5 Region. EMBO J., 23: 3356-3364.
22. Naqvi, R., Haq, M. R. and Mukherjee, K. 2010. MicroRNA Profiling of Tomato Leaf Curl New Delhi Virus (tolcndv) Infected Tomato Leaves Indicates that Deregulation of mir159/319 and mir172 Might Be Linked with Leaf Curl Disease. Virol. J., 7: 281.
23. Nikovics, K., Blein, T., Peaucelle, A., Ishida, T., Morin, H., Aida, M. and Laufs, P. 2006. The Balance between the miR164A and CUC2 Genes Controls Leaf Margin Serration in Arabidopsis. Plant Cell, 18: 2929-2945.
24. Padmanabhan, M. S., Goregaoker, S. P., Golem, S., Shiferaw, H. and Culver, J. N. 2005. Interaction of the Tobacco Mosaic Virus Replicase Protein with the Aux/IAA Protein PAP1/IAA26 Is Associated with Disease Development. J. Virol., 79: 2549-2558.
25. Palatnik, J., Allen, E., Wu, X., Schommer, C., Schwab, R., Carrington, J. and Weigel, D. 2003. Control of Leaf Morphogenesis by microRNAs. Nature, 425: 257-263.
26. Sarkar, D., Maji, R. M., Dey, S., Sarkar, A., Ghosh, Z. and Kundu, P. 2017. Integrated miRNA and mRNA Expression Profiling Reveals the Response Regulators of a Susceptible Tomato Cultivar to Early Blight Disease. DNA Res., 24: 235-250.
27. Scholthof, K., Adkins, S., Czosnek, H., Palukaitis, P., Jacquot, E., Hohn, T., Hohn, B., Saunders, K., Candresse, T., Ahlquist, P., Hemenway, C. and Foster, G. D. 2011. Top 10 Plant Viruses in Molecular Plant Pathology. Mol. Plant Pathol., 12: 938–954.
28. Srivastava, S. and Prasad, V. 2014. Induction of Defence Responses for Biological Control of Plant Diseases. In: “Biological Controls for Preventing Food Deterioration: Strategies for Pre- and Postharvest Management” (Ed.): Sharma, N. John Wiley & Sons, Ltd, Chichester, UK.
29. Sunkar, R. and Zhu, J. K. 2004. Novel and Stress-Regulated microRNAs and Other Small RNAs from Arabidopsis. Plant Cell, 16: 2001–2019.
30. Sunkar, R., Chinnusamy, V., Zhu, J. and Zhu, J. K. 2007. Small RNAs as Big Players in Plant Abiotic Stress Responses and Nutrient Deprivation. Trends Plant Sci., 12: 301–309.
31. Sunkar, R., Li, Y. F. and Jagadeeswaran, G. 2012. Functions of MicroRNAs in Plant Stress Responses. Trends Plant Sci., 17: 196-203.
32. Tagami, Y., Inaba, N., Kutsuna, N., Kurihara, Y. and Watanabe, Y. 2007. Specific Enrichment of miRNAs in Arabidopsis thaliana Infected with Tobacco Mosaic Virus. DNA Res., 14: 227-233.
33. Xu, L., Wang, Y., Xu, Y., Wang, L., Zhai, L., Zhu, X., Gong, Y., Ye, S. and Liu, L. 2013. Identification and Characterization of Novel and Conserved microRNAs in Radish (Raphanus sativus L.) Using High-Throughput Sequencing. Plant Sci., 201-202: 108-114.
34. Yi, H. and Richards, E. 2007. A Cluster of Disease Resistance Genes in Arabidopsis Is Coordinately Regulated by Transcriptional Activation and RNA Silencing. Plant Cell, 19: 2929–2939.