Isolation and Characterization of Indigenous Endotoxin-Forming Bacillus sp. with Insecticidal Activity from Northern Iranian Soil

Authors
1 Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Islamic Republic of Iran.
2 Microbiology and Biotechnology Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, Islamic Republic of Iran.
Abstract
The main goal of the current study was to isolate and characterize endospore-forming soil bacteria that produce parasporal crystalline proteins against larvae of Lepidoptera insects during stationary phase of growth. Two different methods were applied for the isolation of spore-forming strains. Polymerase Chain Reaction (PCR) was used for the characterization of cry gene content of the isolated strains and 16S rRNA sequencing was carried out to identify bacterial strains. Efficiency of the isolates as insecticide was evaluated in a bioassay experiment using insect's larvae. Regarding presence of parasporal inclusion crystals and SDS-PAGE patterns, 10 bacterial strains were isolated from about 200 soil samples. Analysis of crystal-spore mixtures with SDS-PAGE showed a broad range of proteins with molecular weight between 11-230 kDa. Data from PCR analysis indicated that only two isolates (RIPI6 and RIPI18) may contain cry3 gene. Isolate RIPI21 and reference strain (Bacillus thuringiensis subsp. kurstaki) were positive for cry1 gene. 16S rRNA gene sequences of all isolates showed at least 96% sequence match with B. thuringiensis strains deposited in the GenBank. The results of bioassay experiments showed the efficacy of strains RIPI7, 10 and 22 on killing of larvae of both Anagasta kuehniella Zeller and Plutella xylostella Curt. It is concluded that there are some bacterial candidates for biological control of major agricultural pests in north of Iran.

Keywords

Subjects


1. Armengol, G., Escobar, M., Maldonado, M. and Orduz, S. 2007. Diversity of Colombian Strains of Bacillus Thuringiensis with Insecticidal Activity against Dipteran and Lepidopteran Insects. J. Appl. Microbiol., 102: 77-88.
2. Aronson, A., Geng, C. and Wu, L. 1999. Aggregation of Bacillus thuringiensis Cry1A Toxins upon Binding to Target Insect Larval Midgut Vesicles. Appl. Environ. Microbiol., 65: 2503- 2507.
3. Arrieta, G., Hernández, A. and Espinoza, A.M. 2004. Diversity of Bacillus thuringiensis Strains Isolated from Coffee Plantations Infested with the Coffee Berry Borer Hypothenemus hampei. Revista de Biología Tropical, 52: 757-764.
4. Baig, D.N. and Mehnaz, S. 2010. Determination and Distribution of Cry-Type Genes in Halophilc Bacillus thuringiensis Isolates of Arabian Sea Sedimentary Rocks. Microbiol. Res., 165: 376-383.
5. Bartholomew, J. W. and Mittwer, T. 1950. A Simplified Bacterial Spore Stain. Stain Technol., 25: 153-156.
6. Ben-Dov, E., Zaritsky, A., Dahan, E., Barak, Z. E., Sinai, R., Manasherob, R. and Berezina, N. 1997. Extended Screening by PCR for Seven Cry-Group Genes from Field-Collected Strains of Bacillus thuringiensis. Appl. Environ. Microbiol., 63: 4883-4890.
7. Bravo, A., Likitvivatanavong, S., Gill, S. S. and Soberón, M. 2011. Bacillus thuringiensis: A Story of a Successful Bioinsecticide. Insect Biochem. Mol. Biol., 41: 423-431.
8. Bravo, A., Gill, S. S. and Soberon, M. 2007. Mode of Action of Bacillus thuringiensis Cry and Cyt toxins and Their Potential for Insect Control. Toxicon, 49: 423-435.
9. Bravo, A., Sarabia, S., Lopez, L., Ontiveros, H., Abarca, C., Ortiz, A., Ortiz, M., Lina, L., Villalobos, F., Pena, G., Nunes, M., Soberon, M. and Quintero, R. 1998. Characterization of Cry Genes in a Mexican Bacillus thuringiensis Strain Collection. Appl. Environ. Microb., 64: 4965-4972.
10. Brunelle, J. L.and Green, R. 2014. Coomassie Blue Staining. Methods Enzymol., 541: 161-167.
11. Carozzi, N. B., Kramer, V. C., Warren, G. W., Evola, S. and Koziel, M. G. 1991. Prediction of Insecticidal Activity of Bacillus thuringiensis Strains by Polymerase ChainReaction Product Profiles. Appl. Environ. Microbiol., 57: 3057-3061.
12. Crickmore, N., Baum, J., Bravo, A., Lereclus, D., Narva, K., Sampson, K., Schnepf, E., Sun, M. and Zeigler, D. R. 2016. Bacillus thuringiensis Toxin Nomenclature. http://www.btnomenclature.info/
13. Federici, B. A., Park, H. W. and Sakano, Y. 2006. Insecticidal Protein Crystals of Bacillus thuringiensis. In: "Inclusions in Prokaryotes", (Ed.): Shively, J. M. Springer-Verlag, Berlin-Heidelberg, PP. 195-235.
14. Feitelson, J. S. 1993. The Bacillus thuringiensis Family Tree. In: "Advanced Engineered Pesticides" (Ed.): Kim, L. Marcel Dekker Inc., New York, 63-71.
15. Ferreira da Silva, S., Cabral, J. M. and Gomes, R. 2002. Comparaçao entre três Métodos de Isolamento de Bacilos Entomopatogênicos. Circular Técnica del Ministerio deAgricultura, Pecuaria e Abastecimiento, 14: 1-3.
16. Gregersen, T. 1978. Rapid Method for Distinction of Gram-Negative from Gram-Positive Bacteria. Eur. J. Appl. Microbiol. Biotechnol., 5: 123-127.
17. Hofmann, C., Vanderbruggen, H., Höfte, H., Van Rie, J., Jansens, S. and Van Mellaert, H. 1988. Specificity of Bacillus thuringiensis d-Endotoxins Is Correlated with the Presence of High-Affinity Binding Sites in the Brush Border Membrane of Target Insect Midguts. Proc. Natl. Acad. Sci. USA, 85: 7844-7848.
18. Höfte, H., Whiteley, H. R. 1989. Insecticidal Crystal Proteins of Bacillus thuringiensis. Microbiol. Rev., 53: 242-255.
19. Ibarra, J. E., del Rincón, M. C., Ordúz, S., Noriega, D., Benintende, G., Monnerat, R. and Rodriguez, M. H. 2003. Diversity of Bacillus thuringiensis Strains from Latin America with Insecticidal Activity against Different Mosquito Species. Appl. Environ. Microbiol., 69: 5269-5274.
20. Jouzani, G. S., Abad, A. P., Seifinejad, A., Marzban, R., Kariman, K. and Maleki, B. 2008. Distribution and Diversity of Dipteran-Specific Cry and Cyt Genes in Native Bacillus thuringiensis Strains obtained from Different Ecosystems of Iran. J. Ind. Microbiol. Biotechnol., 35: 83-94.
21. Kati, H., Sezen, K., Nalcacioglu, R. and Demirbag, Z. 2007. A Highly Pathogenic Strain of Bacillus thuringiensis Serovar Kurstaki in Lepidopteran Pests. J. Microbiol., 45: 553-557.
22. Khojand, S., Keshavarzi, M., Zargari, K., Abdolahi, H. and Rouzbeh, F. 2013. Presence of Multiple Cry Genes in Bacillus thuringiensis Isolated from Dead Cotton Bollworm Heliothis armigera. J. Agr. Sci. Tech., 15: 1285-1292.
23. Kutasi, J., Kovacs, R., Puspan, I., Makk, J., Takacs, K., Erdelyi, B., Imre, C. S. and Karpati, E. 2016. Protein Patterns and Larvicide Activity of Crystalline Inclusions of Bacillus thuringiensis ssp. kumamotoensis DSM 6070. J. Agr. Sci. Tech., 18: 1945-1951.
24. Laemmli, U. and Favre, M. 1970. SDS Polyacrylamide Gel Electrophoresis. Nature, 227: 680-682.
25. Lacey, L. A., Frutos, R., Kaya, H. K. and Vail, P. 2001. Insect Pathogens as Biological Control Agents: Do They Have a Future? Biol. Control, 21: 230-248.
26. Marvier, M., Mc Creedy, C., Regetz, J. and Karieva, P. 2007. A meta-analysis of effects of Bt cotton and maize on non- target invertebrates. Science, 316: 1475-1477.
27. Nakagawa, I., Amano, A., Ohara-Nemoto, Y., Endoh, N., Morisaki, I., Kimura, S., Kawabata, S. and Hamada, S. 2002. Identification of a New Variant of FimA Gene of Porphyromonas gingivalis and Its Distribution in Adults and Disabled Populations with Periodontitis. J. Periodontal Res., 37: 425-432.
28. Nazarian, A., Jahangiri, R., Jouzani, G. S., Seifinejad, A., Soheilivand, S., Bagheri, O. and Alamisaeid, K. 2009. Coleopteran-Specific and Putative Novel Cry Genes in Iranian Native Bacillus thuringiensis Collection. J. Invertebr. Pathol., 102: 101-109.
29. Nester, E. W., Thomashow, L. S., Metz, M. and Gordon, M. 2002. 100 Years of Bt, a Critical Scientific Assessment. American Academy of Microbiology, November 16-18, Ithaca, New York.
30. Porcar, M. and Juarez-Perez, V. 2003. PCR-based Identification of Bacillus thuringiensis Pesticidal Crystal Genes. FEMS Microbiol. Rev., 26: 419-432.
31. Rampersad, J., Khan, A. and Ammons, D. 2002. Usefulness of Staining Parasporal Bodies When Screening for Bacillus thuringiensis. J. Invertebr. Pathol., 79: 203-204.
32. Reddy, V. P., Rao, N. N., Devi, P. V., Narasu, M. L. and Kumar, V. D. 2012. PCR-Based Detection of Cry Genes in Local Bacillus thuringiensis DOR Bt-1 Isolate. Pest Technol., 6: 79-82.
33. Rodhain, F. 2015. Insects as Vectors: Systematics and Biology. Rev. Sci. Tech. Off. Int. Epiz., 34: 83-96.
34. Roh, J. Y., Jae, Y. C., Ming, S. L., Byung, R. J., Yeon, H. E. 2007. Bacillus thuringiensis as a Specific, Safe, and Effective Tool for Insect Pest Control. J. Microbiol. Biotechnol., 17: 547-559.
35. Salehi Jouzani, G., Seifinejad, A., Saeedizadeh, A., Nazarian, A., Yousefloo, M., Soheilivand, S. and Amiri, R. M. 2008. Molecular Detection of Nematicidal Crystalliferous Bacillus thuringiensis Strains of Iran and Evaluation of Their Toxicity on Free-Living and Plant-Parasitic Nematodes. Can. J. Microbiol., 54: 812-822.
36. Salekjalali, M., Barzegari, A., Jafari, B., 2012. Isolation, PCR Detection and Diversity of Native Bacillus thuringiensis Strains Collection Isolated from Diverse Arasbaran Natural Ecosystems. World Appl. Sci. J., 18: 1133-1138.
37. Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular Cloning. Vol. 2. Cold Spring Harbor Laboratory Press, New York.
38. Santana, M. A., Moccia-V, C. C. and Gillis, A. 2008. Bacillus thuringiensis Improved Isolation Methodology From Soil Samples. J. Microbiol. Methods, 75: 357-358.
39. Santos, C. A., Vilas-Bôas, G. T., Lereclus, D., Suzuki, M. T., Angelo, E. A. and Arantes, O. M. 2010. Conjugal Transfer between Bacillus thuringiensis and Bacillus cereus Strains Is Not Directly Correlated with Growth of Recipient Strains. J. Invertebr. Pathol., 105: 171-175.
40. Seifinejad, A., Jouzani, G.S., Hosseinzadeh, A. and Abdmishani, C. 2008. Characterization of Lepidoptera-Active Cry and Vip Genes in Iranian Bacillus thuringiensis Strain Collection. Biol. Control, 44: 216-226.
41. Unalmis, S., Ayvaz1, A., Yilmaz, S. and Azizoglu, U. 2015. Molecular Screening and Bioactivity of Native Bacillus thuringiensis Isolates. J. Agr. Sci. Tech., 17: 1197-1207.
42. Vidyarthi, A., Tyagi, R., Valero, J. and Surampalli, R. 2002. Studies on the Production of B. thuringiensis Based Biopesticides Using Wastewater Sludge as a Raw Material. Water Res., 36: 4850-4860.
43. Yi, S., Pang, A. S. D. and van Frankenhuyzen, K. 1996. Immunocytochemical Localization of Bacillus thuringiensis CryI Toxins in the Midguts of Three Forest Insects and Bombyx mori. Can. J. Microbiol., 42: 634–641.