Evaluation of Zataria multiflora Boiss. and Carum copticum L. Essential Oil Based Nanoemulsions in Inhibition of Byssochlamys fulva Growth in Apple Juice

Authors
Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156- 83111, Islamic Republic of Iran.
Abstract
Byssochlamys fulva is a heat-resistant fungus whose growth causes significant economic losses since it is mostly implicated in the spoilage of processed fruits (e.g., apple juice). Essential oils have received an increasing attention for use in food products to prevent mold growths. In this study, the ultrasonic emulsification method was employed to prepare Zataria multiflora Boiss. Essential Oil (ZEO) and Carum copticum L. Essential Oil )CEO) based NanoEmulsions (NEs) separately using a mixture of components including Z. multiflora and C. copticum oils, each as an organic phase, as well as the surfactant Tween 80 at a ratio of 1:4 v/v. The Z. multiflora NanoEmulsion (ZEO-NE) formulated with a droplet diameter of 19.42±1.66 nm and a PolyDispersity Index (PDI) of 0.377 and the Carum copticum NanoEmulsion (CEO-NE) with a droplet diameter of 15.13±0.56 nm and a PDI of 0.253 was found to remain stable for more than 9 months at 25 °C. The in vitro evaluation revealed that the the ZEO-NE at a concentration of 5 μL mL-1 and CEO-NE at 25 μL mL-1 gave rise to inhibition effects of 84.23±0.006% (P< 0.05) and 86%±0.012 (P< 0.05) against B. fulva, respectively. The in situ assessment of the nanoemulsions in apple juice revealed a significant (P< 0.05) reduction in the inoculated fungal population. Results indicate that the ZEO-NE and CEO-NE can be used as antifungal compounds in beverages.

Keywords

Subjects


1. Al-Reza, S., Rahman, A., Ahmed, Y. and Kang, S. C. 2010. Inhibition of Plant Pathogens in Vitro and in Vivo with Essential Oil and Organic Extracts of Cestrum nocturnum. Pest. Biochem. Physiol., 96: 86-92.
2. Longhi, D. A., Tremarin, A., Carciofi, B. A. M., Laurindo, J. B. and de Aragão, G. M. F. 2014. Modeling the Growth of Byssochlamys fulva on Solidified Apple Juice at Different Temperatures. Braz. Arch. Biol. Technol., 57: 971-978.
3. Basak, S. and Guha, P. 2017a. Betel Leaf (Piper betle L.) Essential Oil Microemulsion: Characterization and Antifungal Activity on Growth, and Apparent Lag Time of Aspergillus flavus in Tomato Paste. LWT-Food Sci. Technol., 75: 616-623.
4. Basak, S. and Guha, P. 2017b. Use of Predictive Model to Describe Sporicidal and Cell Viability Efficacy of Betel Leaf (Piper betle L.) Essential Oil on Aspergillus flavus and Penicillium expansum and Its Antifungal Activity in Raw Apple Juice. LWT-Food Sci. Technol., 80: 510-516.
5. Basak, S. and Guha, P. 2015. Modelling the Effect of Essential Oil of Betel Leaf (Piper betle L.) on Germination, Growth, and Apparent Lag Time of Penicillium expansum on Semi-Synthetic Media. Int. J. Food Microbial., 215: 171-178.
6. Bassolé, I. H. N. and Juliani, H. R. 2012. Essential Oils in Combination and Their Antimicrobial Properties. Molecules., 17: 3989-4006, http://dx.doi.org/10.3390/molecules17043989.
7. Bordbar, Z., Kavoosi, G., Balotf, S. and Nassiri, S. M. 2017. Differential Expression of NADH Oxidase, Superoxide Dismutase, and Catalase in Wheat Seedling in Response to Zataria multiflora Essential Oil Incorporated into Polyvinyl Alcohol Dispersion. J. Agri. Sci. Tech., 19: 145-155.
8. Eid, A. M. M., Elmarzugi, N. A. and El-Enshasy, H. A. 2013. Preparation and Evaluation of Olive Oil Nanoemulsion Using Sucrose Monoester. Int. J. Pharm. Pharm. Sci, 5: 434-440.
9. Gilani, A. H., Jabeen, Q., Ghayur, M. N., Janbaz, K. H. and Akhtar, M. S. 2005. Studies on the Antihypertensive, Antispasmodic, Bronchodilator and Hepatoprotective Activities of the Carum copticum Seed Extract. J. Ethnopharmacol., 98: 1217-1219.
10. Ghosh, V., Mukherjee, A. and Chandrasekaran, N. 2014. Eugenol-Loaded Antimicrobial Nanoemulsion Preserves Fruit Juice against Microbial Spoilage. Colloid. Surfaces B: Bioint., 114: 392-397.
11. Ghosh, V., Mukherjee, A., and Chandrasekaran, N. 2013. Ultrasonic Emulsification of Food-Grade Nanoemulsion Formulation and Evaluation of Its Bactericidal Activity. Ultrason. Sonochem., 20: 338-344.
12. Ghosh. V., Saranya, S., Mukherjee, A., and Chandrasekaran, N. 2013. Cinnamon Oil Nanoemulsion Formulation by Ultrasonic Emulsification: Investigation of Its Bactericidal Activity. J. Nanosci. Nanotechnol., 9: 114-122.
13. Goudarzi, G. R., Saharkhiz, M. J., Sattari, M. and Zomorodian, K. 2010. Antibacterial Activity and Chemical Composition of Ajowan (Carum copticum Benth. & Hook) essential oil. J. Agri. Sci. Tech., 13: 203-208.
14. Kotzekidou, P. 2014. Byssochlamys. Encyclopedia Food Microbiol., 1: 341-350. http://dx.doi.org/10.1016/B978-0-12-384730-0.00051-3.
15. Kotzekidou, P., 1997. Heat Resistance of Byssochlamys nivea, Byssochlamys fulva and Neosartorya fischeri Isolated from Canned Tomato Paste. J. Food Sci., 62: 410-412.
16. Kouassia, K. H. S., Bajji, M. and Jijakli, H. 2012. The Control of Postharvest Blue and Green Molds of Citrus in Relation with Essential Oil–Wax Formulations, Adherence and Viscosity. Postharvest Biol. Technol., 73: 122-128.
17. Lee, S. O., Choi, G. J., Jang, K. S., Lim, H. K., Cho, K. Y. and Kim, J. C. 2007. Antifungal Activity of Five Plant Essential Oils as Fumigant against Postharvest and Soil Borne Plant Pathogenic Fungi. Plant Pathol. J., 23(2): 97-102.
18. McClements, D. J. and Rao, J. 2011. Food-Grade Nanoemulsions: Formulation, Fabrication, Properties, Performance, Biological Fate, and Potential Toxicity. Crit. Rev. Food Sci. Nutr., 51: 285-330.
19. Mohagheghzadeh, A., Faridi, P., and Ghasemi, Y. 2005. Carum copticum Benth. & Hook., Essential Oil Chemotypes. Food Chem., 100: 1217-1219.
20. Muñoz, A., Caminiti, I. M., Palgan, I., Pataro, G., Noci, F., Morgan, D. J., Cronin, D. A., Whyte, P., Ferrari, G. and Lyng, J. G. 2012. Effects on Escherichia coli Inactivation and Quality Attributes in Apple Juice Treated by Combinations of Oulsed Light and Thermosonication. Food Res. Int., 45: 299-305.
21. Pala, Ç. U. and Toklucu, A. K. 2013. Microbial, Physicochemical and Sensory Properties of UV-C Processed Orange Juice and Its Microbial Stability during Refrigerated Storage. LWT - Food Sci. Technol., 50: 426-431.
22. Sant'Ana, A. S., Simas, R. C., Almeida, C. A., Cabral, E. C., Rauber, R. H., Mallmann, C. A., Eberlin, M. N., Rosenthal, A. and Massaguer P. R. 2010. Influence of Package, Type of Apple Juice and Temperature on the Production of Patulin by Byssochlamys nivea and Byssochlamys fulva. Int. J. Food Microbiol., 142: 156-163.
23. Sari, T.P., Mann, B., Kumar, R., Singh, R. R. B., Sharma, R., Bhardwaj, M. and Athira, S. 2014. Preparation and Characterization of Nanoemulsion Encapsulating Curcumin. Food Hydrocol., 43: 540-546.
24. Shahabi, N., Tajik, H., Moradi, M., Forough, M. and Ezati, P., 2017. Physical, Antimicrobial and Antibiofilm Properties of Zataria multiflora Boiss Essential Oil Nanoemulsion. Int. J. Food Sci. Technol., 52: 1645-1652
25. Soylu, E. M., Kurt, S. and Soylu, S. 2010. In Vitro and In Vivo Antifungal Activity of Essential Oils of Various Plants against Tomato Grey Mould Disease Agent Botrytis cinerea. Int. J. Food Microbiol., 143: 183–189.
26. Sugumar, S., Ghosh, V., Nirmala, M. J., Mukherjee, A. and Chandrasekaran, N. 2014. Ultrasonic Emulsification of Eucalyptus Oil Nanoemulsion: Antibacterial Activity against Staphylococcus aureus and Wound Healing Activity in Wistar Rats. Ultrason. Sonochem., 21: 1044-1049.
27. Tremarin, A., Longhi, D. A., Salomão, B. C. M. and Aragão, G. M. F. 2015. Modeling the Growth of Byssochlamys fulva and Neosartorya fischeri on Solidified Apple Juice by Measuring Colony Diameter and Ergosterol Content. Inter. J. Food Microbiol., 193: 23-28.
28. Weiss, J., Gaysinsky, S., Davidson, M. and McClements, J. 2009. Nanostructured Encapsulation Systems: Food Antimicrobials. Global Issues Food Sci. Technol., 425-479.
29. Zamani-Zadeh, M., Soleimanian-Zad, S., Sheikh-Zeinoddin, M. and Goli, S. A. H. 2014. Integration of Lactobacillus plantarum A7 with Thyme and Cumin Essential Oils as a Potential Biocontrol Tool for Gray Mold Rot on Strawberry Fruit. Postharvest Biol. Technol., 92: 149-156.